ATTENTION

DECUS

PROGRAM LIBRARY

DECUS NO. 8"122A & B

TITLE

SNAP (Simplified Numerical Analysis
AUTHOR
Harvard Medical School
COMPANY Boston, Massachusetts
1967
DATE
SOURCE LANGUAGE

This is a USER program. Other than 'requiri ng that it conform to submittal and review standards,
no quality control has been imposed upon this program by DECUS.

The DECUS Program Library is a clearing house only; it does not generate or test programs. No
warranty, express or implied, is made by the contributor, Digital Equipment Computer Users
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or
related material, and no responsibility is assumed by these parties in connection therewith.

SNAP
A Real-Time Computer Language

SNAP was developed at Harvard Medical School under gfant
number 5PD 7 FR 00246-02 from the Special Research Resources
Branch of the Division of Research Facilities and Resources

of the National Institutes of Health,

(¢) William Simon 1967

) PROGRAM INSTRUCTIONS
(five characters, any letter except X, I, or T)

Arithmetic A=Be+C add
Manipulations: As=B-C subtract
A=B*C multiply
A=B/C divige
A=LGB logeB
A=EXR exponentiation (eR)
A=SRB square rootof B
A=SIB sinB
A=CSB CosB
A=ATB arctanB
A=NEB A=-B :
Input-Output: TYPEB type value of B, do line feed, and carriage return
T>PEB type value of B, no carriage return
PLOTB Plot B against X
DISTB display table values on scope
L=AN4 L = channel 4 voltage input x 1000,
also sets T=real-time.
Conditional: BPl3U go to 13 if U is positive (incl. zero)
BM12K go to 12 if K is negative
BZ13U go to 13 if u=0
BRS UL branch setup L
BR12L go to 12, L-1 number of times
BS12x branch to subroutine beginning at line 12
RETUR return from subroutine to line following last executed
BS instruction
Table lookup: C=TBA table A lookup
M=TBB table B lookup
N=TBD N as a function of D
RESET reset table A and B lookups
GITBD get D indirectly from the table (I pointer)
PITBC put C indirectly into the table (I pointer)
RUBTB inserts the value zero into one hundred table locations
Special GOPL2 perform machine language subroutine which is already in
Instructions: memory. Number 1l-5 indicates which of 5 possible
routines is to be executed.
CONTROL COMMANDS

PROgram load program

CONstants enter numerical constants

TBLE load 100 numbers in A and B tables

AX1IS origin for plotter output

STArt at change starting point of program

CALculate run the program

INSert insert an instruction

DELete delete an instruction

CHAnge change an instruction

List type-punch program and constants

TYPE type a list of constants which have been set
by the program

EXTend extend the number of entries in the table

SN?P Keyboard Controls
Po return to SNAP Control mode, depress ALT MODE key on teletype. (Red Key)
To repeat execution of the program, depress the button marked . (comma). (Greege)
SNAP's starting addrecss is 1200. Y

SNAP

A Real-Time Computer Language

A simple SNApP Program. Find the hypotenuse of a right triangle

given the two sides.

From plane geometry

= Va2 ;| 22

Choose two other letters, 8ay J and K to represent a2 and Bz.

The SNAP Program is as follows:

J=AxA
K=BxB

L=J+K _

H=SRIL (SR means square root)

TYPEH

ENDPT (A1l sSNap Programs end with ENDPT)

Note that there are six steps to the Program. These are

called "instructions." In SNAP all instructions have five
characters

Examples, H=SRL, PLOTY, BP10OU

12345 12345 12345

Control commands are used to load Programs and numbers into the
computer and to edit these. They operate at a management level

above the pProgram. They are hot the program. The distinction be-
tween program andg control commands (usually called metacommands) is
probably the most difficult concept a beginner encounters. Therefore,
to clarify this point in SNAP all control commands have three or four
letters, all instructions have five characters.

Initially you need to know the following control commands.,

PRO ACCEPT‘EBQGRAM

CAL CALCULATE

LIST TYPE OUT PROGRAM

INS INSERT AN INSTRUCTION

CHA CHANGE AN INSTRUCTION

DEL DELETE AN INSTRUCTION

CON ENTER CONSTANTS (or change constants)

TBLE ENTER A TABLE

ENAP- 3

The symbol .~ Mmeans a car-iage return. The control command
is not executed until the carriage return is performed.

Now let us see how we enter and operate a SNAP program by means
of the control commands. SNAPD starts from the phase called "CONTROL. "

Start Computer

'CONTROL PRO, (Enter Program)
0010 J=A*A

0011 K=B*B

0012 L=J+K

0013 H=SRL

0014 TYPEH

0015 ENDPT

0016 Return to Control (Red Key of teletype)*
CONTROL COQQ (Enter Constants)
A=5

B=0

Return to Control (red key)

CONTROL CAL (Calculate)

H=+0.7810249E+0l(which is read as .78 x 10! or 7.810..)

The ENDPT instruction now stops the computer and allows the
operator to change any or all constants. Suppose he does the
following

A=27.2
B*16.4

He then strikes. the single key called "repeat calc" (the green
key)** and the program is run again. The computer answers
-H=+0.3176161E+02 (read as .31 x 102 or 31.76161)

Note that after ENDPT it is not necessary to return to CONTROL
to change a constant. However if a change in the program is to he
made the red key returns to CONTROL.

*This is the key marked "ALT MODE" on ASR 33 teletype
**Comma key

-

SNAP-4
Suppose we want the ratio of A/B. cCall this R. We want to
insert two instructions:
R=A/B
TYPER
To do this, return to control.
CONTROL IN§)
¢
LINE NUMBER 15 (Note these are inserted in
reverse order so that the
TYPER line numbering comes out
right)
CONTROL IQE}
LINE NUMBER 15
R=A/B
CONTROL LISE) (This types out the program and the
0010 J=A*A last values of all the constants used
0011 K=B*B by the program)
0012 L=J+K

0013 H=SRL
0014 TYPEH
0015 R=A/B
001le TYPER

0017 ENDPT
CON
A+0.,27200E+02

B+0.163999E+02

.
.

CONTROL CAL
<

Partial List of SNAP Instructions

The variables used here are illustrative; any letter except
X, I,T may be used for any variable. The use of these will be de-

scribed later.

A=B+C Sets A=RB+C
A=B*C Sets A=BxC
E=J/K Sets E=J/K

F=R-S Sets F=R-S

SNAP-5

TYPEB Types out the value of B
R=LGP Sets R=log,P

Q=EXR Sets Q=eR

M=SRN Sets M=VN

U=SIL Sets U=SinL

U=CSL Sets U=CosL

P=ATY Sets P=Are¢Tany

DO PROBLEM ONE NOW.

On_to_Bigger Things

Let us type out the sum of the series of odg numbers beginning

with 5.
i.e. 5 =5 (Type 5)
745 =12 (Type 12)
5+7+9 =2] (Type 21)
5+7+9+11413+415 =60 (Type 60)
etc.

Let C be the current odd number. Wwe will initially set C=5, Let S
be the sum of numbers so far. Let T=2. fThe SNAP Program follows:

S=S+C
C=C+T
TYPES
ENDPT

After entering the program, set S=0

C=5
T=2

Now calculate. SNAP will print out s=5,

The second instruction will have changed C from 5 to 7 so that when
we hit repeat calculation, the next Pass through the program will
add 7 to 5 ang print

s=12
etc.

Programs of this type occur frequently. They are characterized by
a repetitive calculation in which one or more variables takes on
new values at each execution of the program. In the above case we
accomplished this by means of sNap's rept. calc. key. There is
another faster way using Branch Instructions. SNAP has three
simple branch instructions. The first is of the form BPl2U which

SNAP-6

means Branch on Positive value of U to instruction 12. Wwhen the
program reaches this instruction, SNAP checks the value of the
variable U. If U is positive (zero is included as a positive
number), instruction number 0012 will be executed next and the
program will continue from there. If U is found to be negative,
the branch to 0012 will not occur and the program will continue in
Sequence. If we wish the previous program to continue indefinitely
we modify it as follows:

0010 S=S+C (new value of 8 = C+ 0l1d value of Ss)
0011 C=C+T (new value of C = T+ 014 value of C)
0012 TYPES
0013 BP1OT
0014 ENDPT

Since T is always 2, it is positive and the branch to instruction
10 will occur repeatedly. The program will therefore loop in-~
definitely. The sequence of operations will be as follows:

(Initially s=0,C=5, T=2)

S=S+C (new S= 0+5)
C=C+T (new C=5 +2)
TYPES (types s= 5)

T positive, go through loop again

S=5+C (new S= 54+7)
C=C*+T (new C= 7+42)
TYPES (types s= 12)

T positive, continue looping

S=5+C (new S= 12+49)
C=C+T (new C= 9+ 2)
TYPES (types s= 21)

T positive, loop

Messeses

tc.
DO PROBLEM 2 NOW.
Suppose we do not want a looping program to continue to loop

indefinitely. We have two ways of terminating this action. One
1s to insert a variable which is changed on each pass through the

SNAP-7

loop. For example we can let H=7 at the beginning of a program and
add -1 to it during each pass through the loop. A branch on
positive H instruction (BP1OH) will cause a return to instruction
0010 seven times. Then on the eighth pass through the loop, H will
have the value -1, a branch will not occur and the program will
continue in sequence. This kind of operation is particularly use-
ful when the program must do a branch which depends upon a variable
it is calculating. For example:

Find the smallest integer greater than 2 for which
Y = 14x(logeN)~-N is a negative number.

0010 N=U+U Sets N=2,
0011 N=N+U Add one which makes N=3.
0012 B=LGN Calculates logeN
0013 C=A*B Sets C=14 x(loggN)
0014 D=C-N Sets D=14x(logegN)-N
When N=3, D will be positive. (loge3=l.1).
0015 BP11D
0016 TYPEN
0017 ENDPT

Set U= 1 and A = 14.

At instruction 0015 the program returns to instruction 0011 and N
is increased by one again. This loop continues until N=57 at which
point D is negative and the value of N is typed. The program then
stops at ENDPT.

The other technique for terminating a looping sequence requires
two insiructions, a BRANCH SET UP instruction and a BRANCH RETURN
instruction. The branch setup must precede the branch return and
all other instructions in the repeating loop. Any variable may be
chosen to specify how many times the loop is to be repeated. As an
example let us choose K as the variable and let the loop repeat 4
times. The program looks like this:

0010

0011 BRSUK Branch set up K

0012

0013

0014

0015 BR13K Branch return to 13, K-1 times

The constant K must be set equal to 4 before instruction 0011
is encountered. It may be assigned or computed in some other part
of the program. The value of K is not affected by either of these
instructions.

SNAP-8

Example. Add up the first one hundred odd integers and type
out the result.

let M=100, u=l1, T=2, Z=Q

0010 S=Z+2
0011 N=2+U
0012 BRSUM
0013 S=S+N
0014 N=N+T
0015 BR13M
00leé TYPES
0017 ENDPT

DO PROBLEM 3 NOW.
PLOT INSTRUCTION

Up to this point all the communication with the computer has
been via the teletype. For many problems it is desirable to have a
pictorial or graphic output from the computer. This is possible by
means of a special cathode ray oscilloscope which is connected to
the computer. 1In sffecting a display the horizontal component is
always represented by the value of X; the vertical component may be
represented by any variable other than X. For example, PLOTK will
cause a display of a single point using the value of X as the
horizontal coordinate of the point and K as the vertical coordinate.
X=0 represents the left side of the oscilloscope; X=1000, the right
side. Vertically, -500 is the bottom of the Scope and +500 is the
top.

Let us plot the curve, K-sz.
for X=0 to 1000 and A=.0005

We will plot the values of:
X=0, 10, 20, etc. to 990, 1000.

0010 X=Z+2Z
0011 BRSUM
0012 V=X*X
0013 K=A*y
0014 PLOTK
0015 X=X+P
0016 BR12M
0017 BP1OP
0018 ENDPT
Set zZ=0 A=_,005 M=101 P=10

DO PROBLEM 4 NOW.

SNAP-9

ANALOGUE AND TIME INPUTS

The most unique feature of SNAP is its ability to interact on-
line with other laboratory instruments. Most computers and computing
languages are designed to accept input information only from punched
cards or teletypewriters. For computer interaction with a laboratory
experiment, a language is needed which can accept electrical inputs
directly and which can read inputs from a time measuring device,
known in the computer trade as a "real-time clock." Both of these
functions are incorporated in a single SNAP instruction.

The computer has seven channels of voltage input, numbered 1 to

7. For example the instruction:
P=ANS

sets the value of P=1000 x (Voltage on channel 5) and simultaneously
reads the time (in seconds) which has elapsed since the program was
first run. Any letter except T can be used in the analogue input
instructions (for example B=AN2, R=AN7) but the time is always in-
serted into T. T is read to six significant figures so that very
small time intervals can be measured.**

The input voltages are limited to the range -1 to +l1 volt so
that the variable set by this voltage will be between -1000 and
+1000. The analogue input voltages can be fed into the computer
from the outside or can be generated within the computer by means of
knobs on its front panel.

Let us try a problem involving reading an analogue value from
the knobs. In one of our earlier problems we generated a parabola
K=Ax? using the value A=.0005. Let us instead read the value of A
from knob 7 and use it to change the shape of the parabola. Since a
variable read from the knobs is in the range -1000 to +1000 we will
have to multiply it by a small number to make it suitable for use as
A. For Example:

0010 B=AN7
0011 A=N*B
0012 X=Z*Z
0013 BRSUM
0014 V=X*X
0015 K=A*V
00le PLOTK
0017 X=X+P

**Program running time is sometimes important. In SNAP, each in-
struction takes about éme and one-half milliseconds.

SNAP-10

0018 BR14M
0019 BP1OP
0020 ENDPT

2=0 N=.000001 M=100 P=10
DO PROBLEM 5 NOW.
ANALOG INPUT FROM CLOCK
A very common problem involves measuring the time between

Successive electrical pulse inputs. Suppose we have a series of
positive pulses occurring at a rate of about one per second. The

The pair of instructions,

0012 V=AN4
0013 BM12vV
0014

will remain in a loop until VvV goes positive since the branch back
to 0012 will occur repeatedly for negative V. When V goes positive,
instruction 0013 will not branch and 0014 will be executed next.

Suppose we want the interval between two pulses. This program

-will measure it andg type out the interval.

0010 V=AN4
0011 BM10OvV
0012 UmT+72Z Sets U=T first

0013 V=AN4
0014 BM13vV
0015 C=T-U Sets C equal to difference
0016 TYPEC Types interval in seconds
0017 ENDPT

Z=0

Sets T equal to time of first pulse

Sets T equal to time of second pulse

Be sure that you understand this before proceeding.

SNAP-11

SNAP TABLE INSTRUCTIONS

SNAP has another feature particularly useful for biological
problems, Table Instructions. A list of one hundred numbers may
be entered from the keyboard or from punched paper tape. To do
this, return to "CONTROL" and type TBLE) , and then the list of
one hundred numbers. SNAP will return to "CONTROL" when the
maximum number of entries has been entered. If fewer points are
to be entered the red key will return to "CONTROL."

The table entries may be referred to in a variety of ways.
Choose any variable, say G, and let
G=TBA (G equal table a)
The first time this instruction is executed following "CAL," G is
set equal to the first table entry. The next time this instruction
is executed G is set equal to the second table entry. The next
time to the third, etc. For example:

Let the table entries be---

1) 1098
2) 1096
3) 1094
4) 1092
99) 900
100) 898

Then the program---

0010 G=TBA
0011 TYPEG
0012 BP10Q
0013 ENDPT Q=1

Will type out---

G=.1098E+4
G=.1096E+4
G=.1094E+4

etc., until the end of the table hés been
reached (100 values).

Note that this sequential step reading of the table works only
if the table is referred to by
Something=TBA (Table A)

SNAP~12

If instead you refer to the table as TBB (Table B), a similar
action occurs except that the first execution of the instruction
reads the fifty-first entry, the next the fifty-second, etc.

If at some point in the program you wish to start the table
reference from the beginning again (i.e. entry 1 for TBA, entry
51 for TBB), a RESET instruction is used.

Suppose you wish to display a table of 40 points continuously.
Enter the X coordinates in the first 40 locations of the table.
Fill the next ten locations with zeros, then enter the Y coordinates
as the 51st to 90th entries.

The following program will display the forty points.

0010 BRSUD
0011 O=TBA
0012 X=K*Q
0013 R=TBB
0014 Y=L*R
0015 PLOTY
0016 BR11D
0017 . RESET
0018 BP10OD

D = 40, L and K are scale factors which depend upon the size of the
numbers in the tables. The program will loop 40 times, displaying
successive points. Then on the reset instruction, the table pointers
will be re-initialized and the successive points will be displayed
again.

The SNAP tables can be used in another very useful way. Fre-
quently biological problems involve an intermediate step of a
graphical lookup. This occurs when one quantity is an empirical
function of another. FPor example a plot of the threshold of hearing
as a function of frequency looks like this:

[
A =
o © o ©

N
o

Intensity Db

10% 105 10%
Frequency C.P.S.

[
o

SNAP-13

If we wish to incorporate this graph into the solution of a
problem the procedure is as follows. Choose any number (up to 50),
of arbitrary points along the horizontal axis. Enter these as
Table 2, i.e. the first fifty points of the SNAP table. Then enter
as Table B (i.e. points 50 to 100) the corresponding points from
the graphed line.

100 |,
80
l'd
60
““““ |
40 | .
]
20 : ’
I Py
: -
0 i .
10 20 102 200 103 2000 10% 20, 000
Table A * Table B
10 ' 100
20 75
100 58
200 36
1000 22
2000 | 15
10,000 8
20, 000 25

The instruction P=TBC will, when given a value for C, look C
up in Table A and set P equal to the corresponding value from
Table B, interpolating if necessary. Suppose C=80, then P=62.25.
Any letter except A or B may be used following TB. Thus the above
instruction can be written V=TBW. If W = 3000 then V = 14, 1f
W = 200, v=36, etc.

The density € leaves under my maple tree as a function of
distance from the center of the trunk is given by the following
table:

*must be in increasing order

SNAP-14

r distance ft. leaves/sq. ft.
1 2
2 2
3 7
5 10
7 12

10 15
15 12
20 10
30 7
40 3
50 1
60 0
70 0

The area of a ring 1/10 ft. wide of radius r ft. jg & 2T r.
By adding up rings find the total number of leaves out to 60 ft.
Start from r=1 ft. :

N=Z+2
R=U+Z 2

—> A=Q*R 0=10= ,62832
D=TBR
M=2A*D P=60 ft.
N=N+M L=0.1 ft.
R=R+1L, Z=0
B=R-P U=1

~— BM12B
TYPEN
ENDPT

Note: The SNAP Program which uses the D=TB instructions must have
checks so that the entry referenced is not out of range of the
table.

Indirect Table Instructions

The instruction PITB- and GITB- allow the SNAP Programmer to
use the table in another way. By setting I to some number between
1 and 100, the program may Put information into table position "I"
or may Get the value out of position "I."

PITBE will put the value of E into table entry I.
GITBE will get table entry I and set E equal to its value.

ENAP-15

Example: If E = 2.7145 and I = 5, the instruction PITBE would
put the value 2.7145 into table position 5. The in-
struction GITBK would then set K = 2.7145, if I were
5 and the table is left unchanged.

Use of Indireét Instructions is illustrated in the following
program.

Pulse Interval Histogram

10 RUBTB Clear Table

11 U=T+Z Sets U equal to time of last pulse
12 Y=AN1 Look for positive pulse

13 BM12Y If no pulse go back to 12

14 I=7T-U Interval equals time of new pulse -time of old
15 I=I*K Scale I to between 1 and 100

16 GITBC Get value of C from table place I
17 C=C+D Increase C

18 PITBC Put new C into table place I

19 DISTB Display the table

20 BZ11l2 Branch back to 11

21 ENDPT

2=0

D=1.0

Problem

Change the above to a signal amplitude histogram takihg a
sample every 0.1 sec.

Response Averaging

10 N=Z+2Z Set N=0

11 RUBTB Clear table

12 Y=ANG6 . .

13 DISTB Chegk for trlgger. If no trig, display and sample
again. If trig go to 15

14 BM12Y

15 L=N+U Set L=N-1

16 BRSUM Set up loop counter for 50 loops

17 I=Z+U Set table pointer to 1

18 V=T+D Set V equal to time of last sample + delay

19 Y=ANT Sample channel 7 until time is greater than old

20 F=T-V time plus delay

21 BM19F

22 GITBP Get P from table location I

SNAP-16

23 P=P*N Compute average for Ith entry
24 P=P+Y Average (new)=/Average (old)*N7+Y//R+17

25 P=pP/L
26 PITBP Put new average into location I
27 I=I‘U}. Increment I until 50th point is done
28 BR18M
29 N=N+U Increment N and do another fifty points
30 BP12M
31 ENDPT
M=50
=time between points in sec
U=1
Z=0

Subroutine Instructions

The BS_X and RETUR Instructions permit a sequence of SNAP
instructions to be executed at several points in a program without
the actual instructions being repeated in the program.

For example, the program on page 11 could be rewritten:

0010 BSléXx
0011 U=T+Z
0012 BS16Xx
0013 C=T-U
0014 TYPEC
0015 ENDPT
0016 V=AN4
0017 BMl6V
0018 RETUR

Z=0

The first time RETUR is executed, it acts like a BZ11Z; the
second time, it acts like BZ13Z.

How to Use GOPL
The instruction GOPL# calls a subroutine which is residing
in core memory of the computer, performs the subroutine and returns

to perform the next SNAP instruction.

There may be up to 5 such subroutines available for use with
SNAP. They may be keyed into memory, if short, or written in

SNAP-17

symbolic language and assembled by PAL. The resulting binary
tape may then be read into memory.

The spaces available for binary subroutines are locations
4145-4571. The starting addresses of such routines should be
stored in locations 1765-1771, where location 1765 contains the
starting address of the first Subroutine, 1766 the second, ...

The SNAP variable list begins at location 2725. ‘The variables
are in floating point format, each requiring 3 memory cells. Some
sample addresses are:

exp. mantissa

A loc. 2725, 2726, 2727

? 2730, 2731, 2732
é 2755, 2756, 2757
é 3016, 3017, 3020
é 3032, 3033, 3034

The 100 entry table begins at location 3470 and uses the same
floating point format.

To manipulate floating point numbers, the "floating-point
package" in SNAP may be used. For arithmetic manipulations, the
FP interpreter is entered by the instruction

JMS 1 2 7
All instructions following this are interpreted as floating point
until a FEXT (0000) instruction is encountered. A return is then
made to the next sequential instruction. The following are FpP
instructions:

FGET Y get Y into FP accumulator

FPUT Y put contents of Fp accumulator in loc. Y
FADD Y add Y to FP accumulator

FSUB Y subtract Y from FP accumulator

FMPY Y multiply FP accumulator by Y

FDIV Y divide FP accumulator by Y

SNAP-18

Indirect addressing may be used.

The resultant answer in each case is left in the FP accumulator

(loc. 0044-0046). oOther floating point instructions may be entered
by using their numerical codes.

0002 square Root

0003 Sine

0004 Cosine

0005 Arctan

0006 Exponent

0007 Logarithm (base e)

The instruction JMS I 2 S allows a number to be typed into the
computer from the keyboard in floating-point format. The number
remains in the floating-point accumulator.

The instruction JMS I Z 6 will type out the number contained
in the floating-point accumulator.

A sample sequence of instructions using the floating-point
interpreter might be:

X = VaZ Bi, where A and B are SNAP variables,
but X is not. '

JMS I Z2 7 enter floating point interpreter
FGET I RA get A

FMPY I RA get a2

FPUT X store temporarily
FGET I RB get B

FMPY I RB get B2

FADD TEMP add a

0002 take VaZ + B2
FPUT X

FEXT

RA, 2725

RB, 2730

X, O

0

SNAP-19

Control Instruction EXTEND

This control instruction allows the 10030 point table to be
extended to a maximun of 21010 points. The table will be divided
into tables A and B, with one half the total number of points in
each. The number of table entries may also be decreased to less
than 100 points with this instruction.

After gaining CONTROL, type EXTEND,

Computer types TO . User inserts number of table entries
desired.

Each time PRO is typed to enter a new program, the number of
table entries will return to 100.

Note: DISTB will still display only 100 points.

Important: The table is extended to locations above 4145. Therefore,

if GOPL is being used, be sure binary routines are located ahove the
table extension.

SNAP Checkout Routine

SNAP contains a checkout routine which is read into core along

with the program. To check that SNAP has been properly loaded into
the computer, proceed as follows:

l. If SNAP was read in from magnetic tape.

a) after computer types CONTROL, user types "CAL "

b) if system is working properly, "I'M OKAY" will be typed,
then a SINE wave will appear on the display. The X- and
Y-coordinates of the curve may be changed by adjusting
analogue inputs 1 and 2.

c) depress RED KEY (ALT MODE) to return to control and begin to
enter program.

d) if anything occurs other than the message and display de-
scribed above, SNAP is not properly loaded into core.

2. If SNAP was read in from paper tape.
a) set switches to 1200.

b) depress LOAD ADDRESS key.

e ————

SNAP-20

c) depress START key.

d) follow instructions above, starting at l.a).
PROBLEM 1:

Find Y = A/Toge (N-B)7

Type the value of Y for

B=34 N=36, 40, 50

B —

—— Fill these in

TYPEY
ENDPT

Think about how you would enter this program. You will be
asked to run it on the computer.

Now repeat the calculation for
B=60 N=70, 80, 90
What additional steps will be necessary?
PROBLEM 2:
Calculate the value of C=CosA and type out A and C for the

following values of A: 0, .1, .2, .3, .4 etc. Use a branch in-
struction so that the program runs indefinitely.

1]

t
g
]

PROBLEM 3:

The factorial of a number means the product of all the integers
up to and including that number. Thus

4 Factorial = 4 x 3 x 2 x 1l = 24
6 Factorial = 6 x 5 x 4 x 3 x2x1-=720.

SNAP-21

If N is the number write a SNAP program using BRSUN and BR??N to
compute and type out N Factorial. U=1, 2=0, P=Product, M= Each Factor

ggig ;:g:; Sets these initially to one
0012 BRSUN
0013
0014
0015
0016 TYPEP
0017 ENDPT
PROBLEM 4:

To Plot a Circle.

C=CSA (C=cos angle a)
S=SIA (S=sin Angle A)
X=R*C
Y=R*S
PLOTY
=A+X
BP10OI1
ENDPT N=200 1=0.1 A=(Q

Since the point X=0, Y=0 is at the left center of the scope,
the circle will appear as a half ecircle.

Problem: Modify the above program to put the center of the circle
in the center of the scope.

PROBLEM 5:

Draw a circle as before but with the radius controlled by
knob 6.

PROBLEM 6:

Repeat problem on page 14 but find the radius which contains
half the leaves.

