

DECUS NO.

8-178

TITLE

Reverse Assembler

AUTHOR

Henry G. Dupont

COMPANY

St. George's School Newport, Rhode Island

DATE

November 25, 1968

SOURCE LANGUAGE

PAL III

ATTENTION

This is a USER program. Other than requiring that it conform to submittal and review standards, no quality control has been imposed upon this program by DECUS.

The DECUS Program Library is a clearing house only; it does not generate or test programs. No warranty, express or implied, is made by the contributor, Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the program or related material, and no responsibility is assumed by these parties in connection therewith.

REVERSE ASSEMBLER

DECUS Program Library Write-up

DECUS No. 8-178

ABSTRACT

The Reverse Assembler accepts a paper tape in binary format and produces either a printed listing or a paper tape that is acceptable to the PAL Assembler as a symbolic tape. It produces the mnemonics for almost all input-output devices as well as PAL III and Floating Point instructions.

REQUIREMENTS

Storage

The program is loaded into locations 0-5400. The character output tables extend from 1200-5400.

Equipment

Basic PDP-8, 8/S, or 8/I. Input is on either the high speed reader or ASR-33. Output is on either the high speed punch or ASR-33. Input and Output devices are selected by switch settings. The type 182 EAE is not used.

USAGE

Loading

The Reverse Assembler is supplied as a binary tape and is loaded with the BIN loader.

Switch Settings

During initialization the switch register is read to specify the mode of operation and the input-output devices.

BIT 0 specified the output mode of the program

BIT 1 specifies the input device

BIT 2 specifies the output device

BIT 3 specifies the presence of Floating Point instructions

	BIT 0	BIT 1	BIT 2	B1T 3
ON	Output Mode 1	High Speed Reader Input	High Speed Punch Output	Presence of Floating Point Instructions
OFF	Output Mode 2	ASR-33 Input	ASR-33 Output	Absence of Floating Point Instructions

Mode 1 gives leader, a symbolic tape acceptable to the PAL III Assembler, a "PAUSE", and trailer.
Mode 2 gives a printed listing.

Start

- Load program with binary loader.
- 2. Set 0200 in the switch register, press LOAD ADDRESS.
- 3. Set desired modes of operation and input-output devices in Bits 0-3 of switch register.
- 4. Put binary program tape in appropriate reader.
- 5. Press "START"

 Program will read the binary tape and produce a listing or a symbolic tape until checksum is reached. At this point, either "PAUSE" or the checksum is typed depending on the output mode.
- 6. Restart program at 0200.

Error Messages

If the program is started in the middle of a binary tape, or the reader misses a character, the program will be out of phase with the tape and the first 6 bits of an instruction will be interpreted as the last 6 bits and vice versa. When the presence of a character with channel 7 or 8 appears in the second half of an instruction, "READER ERROR" is typed, and the computer halts.

Recovery

To recover from reader error, restart the program.

DESCRIPTION

Discussion

The Reverse Assembler is a utility program designed to accept a tape in binary format and produce an output in either of two modes. Mode 1 gives leader, punches a symbolic tape, punches "PAUSE" when the checksum is encountered, and punches trailer. The symbolic tape is acceptable to the PAL III Assembler. Mode 2 produces a listing that is easily read and differs from Mode 1 in the format of output. The "PAUSE" is replaced by an octal number followed by "(CHECKSUM)". If an address is encountered on the tape, it is punched out in the form *XXXXX where X is an octal digit.

Applications

The Reverse Assembler is used when only the binary tape of a program is available. It makes a listing (Mode 2) and/or a symbolic tape (Mode 1). This is especially useful when modifying a binary

tape that would be difficult to modify with a patch. (i.e. when changing ASR-33 input to high speed reader input because a typical high speed reader subroutine needs one more instruction.) This is done by making a symbolic tape (using Mode 1), making the desired modifications with the symbolic tape editor, and using the PAL III Assembler to produce a new modified binary tape. The Reverse Assembler may also be used to produce a revised copy of a program that has been modified by the DDT, ODT, or any other debugging program.

An example follows:

```
/PAL III ASSEMBLER PASS 3 LISTING
            /REVERSE ASSEMBLER TEST PROGRAM
0200
      6046
            START.
                    TLS
0201
      4406
                     JMS I INPUT
0202 4407
                     JMS I 7
0203 6100
                    FPUT SAVE
0204 0000
                    FEXT
0205
     4406
                    JMS I INPUT
0206 4407
                    JMS I 7
0207
      60003
                    FSIN
0210 3100
                    FMPY SAVE
0211 6103
                    FPUT SAVE2
0212 0000
                    FEXT
0213 1103
                    TAD SAVE+3
0214 7006
                  · RTL
0215 1107
                    TAD NUM2
0216
      7004
                    RAL
0217
      3103
                    DCA SAVE+3
0220 1106
                    TAD NUM1
Ø221
      3110
                    DCA COUNT
0222 2103
                    ISZ SAVE+3
0223 2110
                    ISZ COUNT
0224 5222
                    JMP .-2
0225
      4407
                    JMS I 7
0226
      5100
                    FGET SAVE
0227
      0000
                    FEXT
0230
      4405
                    JMS I OUTPUT
      7402
                    HLT
0231
            /VARIABLES AND CONSTANTS FOLLOW:
            OUTPUT, 7200
0005
      7200
            INPUT
0006
      7400
                    7400
0007
      5600
                    5600
            *100
0100
      0000
           SAVE
                    0
0101
                    Ø
      0000
0102
      0000
                    Ø
          SAVE2,
0103
      0000
0104
      0000
                    Ø
0105
      0000
                    Ø
          NUM1,
0106 0000.
                    Ø
0107
           NUM2,
      6424
                    6424
0110 0000
            COUNT,
COUNT
        0110
INPUT
        0006
NUM1
        0106
SMUN
        0107
OUTPUT
        0005
SAVE
        0100
SAVE2
        0103
START
        0200
```

This is an output from the Reverse Assembler in MODE 1. In MODE 1, the Reverse Assembler punches leader, the text, and trailer. The Text is acceptable to the PAL III Assembler.

```
*0200
6046 /000 -1732 TLS
                                 /Addresses are in standard format
4406 /001 -3372 JMS I 0 006
                                 /IOT instruction
4407 /002 -3371 JMS I 0 007
                                 /This is a JMS indirectly to page Ø
6100 /003 -1700 FPUT
                        0 100
0000 7004 +0000 FEXT
                                 /Floating Point instructions are
4406 /005 -3372 JMS I 0 006
                                 /triggered by a JMS I 7
4407 /006 -3371 JMS I 0 007
0003 /007 +0003 FSIN
3100 /010 +3100 FMPY
                        0 100
                                 /Floating Point Package D instructions
6103 /011 -1675 FPUT
                      0 103
                                /are assumed
0000 /012 +0000 FEXT
1103 /013 +1103 TAD
                       0 103
7006 /014 -0772 RTL
1107 /015 +1107 TAD
                      0 107
7004 /016 -0774 RAL
3103 /017 +3103 DCA
                       0 103
1106 /020 +1106 TAD
                       0 106
3110 /021 +3110 DCA
                       0 110
2103 /022 +2103 ISZ
                       0 103
2110 /023 +2110 ISZ
                       0 110
5222 /024 -2556 JMP
                         022
4407 /025 -3371 JMS I 0 007
5100 /026 -2700 FGET
                        0 100
0000 /027 +0000 FEXT
4405 /030 -3373 JMS I 0 005
7402 /031 -0376 HLT
*0005
7200 /005 -0600 CLA
7400 /006 -0400
5600 /007 -2200 JMP I
                        000
                                /This is data but is assigned
                                /a CLA because of the octal code
*0100
0000 /100 +0000 AND
                      0 000
0000 /101 +0000
0000 /102 +0000
                                /Because it is impracticable to
0000 /103 +0000
                                /have two or more AND instructions
0000 /104 +0000
                                /in a sequence, the program assumes
0000 /105 +0000
                                /that the second and following
0000 /106 +0000
                                /AND instructions are data
6424 /107 -1354 TTXON
0000 /110 +0000 AND
                      0 000
PAUSE
                                /This is data, but the octal
                                /code is the same for the Data
                                /Communications Systems Type 680
```

This is an output from the Reverse Assembler in MODE2. It is slightly faster than mode 1 and is easire to read because there is no slash and the output order is different.

```
*0200
 000 6046 -1732 TLS
 001 4406 -3372 JMS I 0 006
 002 4407 -3371 JMS I 0 007
 003 6100 -1700 FPUT
                        0 100
 004 0000 +0000 FEXT
 005 4406 -3372 JMS I 0 006
 006 4407 -3371 JMS I 0 007
 007 0003 +0003 FSIN
 010 3100 +3100 FMPY
                        0 100
 011 6103 -1675 FPUT
                       0 103
 012 0000 +0000 FEXT
- 013 1103 +1103 TAD
                       0 103
 014 7006 -0772 RTL
 015 1107 +1107 TAD
                       0 107
 016 7004 -0774 RAL
 Ø17 3103 +3103 DCA
                       0 103
 020 1106 +1106 TAD
                       0 106
                       0 110
 021 3110 +3110 DCA
 022 2103 +2103 ISZ
                       0 103
 023 2110 +2110 ISZ
                       0 110
 024 5222 -2556 JMP
                         Ø22
 025 4407 -3371 JMS I 0 007
 026 5100 -2700 FGET
                        0 100
 027 0000 +0000 FEXT
 030 4405 -3373 JMS I 0 005
 031 7402 -0376 HLT
 *0005
 005 7200 -0600 CLA
 006 7400 -0400
 007 5600 -2200 JMP I
                         000
 *0100
 100 0000 +0000 AND
 101 0000 +0000
 102 0000 +0000
 103 0000 +0000
 104 0000 +0000
 105 0000 +0000
 106 0000 +0000
 107 6424 -1354 TTXON
 110 0000 +0000 AND
                       0 000
 2474
        (CHECK SUM)
                                  /MODE 2 gives Checksum
```

METHODS

Discussion

The program initializes by checking the switch register for the input-output devices and the operating mode. It then reads a binary tape. If channel 7 is punched (indicating an address) the program punches *XXXX where XXXX is an octal number. The current page address and the octal instruction are punched next followed by the signed equivalent of the octal instruction. not an address, the first three bits of the octal instruction are examined to find the operation code. A JMS I 0007 raises a flag which assumes that Floating Point instructions are used unless Bit 3 in the switch register is raised. This disables the Floating Point instruction subroutine and prevents the Reverse Assembler from interpreting instructions as being Floating Point after a JMS I 0007. Operation codes 0-5 are treated as memory reference instructions and are always typed out. If the instrution has an operation code of 6 or 7, the Reverse Assembler compares the word to a table on pages 5-8. If the word is found in the table, the mnemonic code is typed out and the next character on the paper tape is read. If the word is not found on the tables, it is assumed the word is not an instruction, but data, and the computer reads the next character having typed only the address and the octal code. The IOT list contains every IOT instruction except the ones for the Serial Magnetic Drum System Type 251 and Type RM08 as well as the instructions for the Garded Scanning Digital Voltmeter Type AF04A. This is because the same octal codes are used by two or more different inputoutput devices. The program checks for the checksum and punches either "PAUSE" (in Mode 1) or "XXXX (CHECKSUM)" (in Mode 2). The Reverse Assembler punches leader-trailer in Mode 1.

FORMAT

Input Data

On input, the program accepts a paper tape in binary format. A tape in RIM format may be read, however, an address will be typed on every other line.

Output Data

The output depends on the preselected output mode. In mode 2, the computer types a 3-digit word which indicates the address of the instruction on the current page. Next comes a four-digit octal code indicating the code as read off the paper tape. This is followed by a signed 4-digit number which is the equivalent of the octal number. (i.e. 7773 is equivalent to -5.) If the octal number represents a memory reference instruction, the mnemonic code is typed. If it is an indirect reference, an "I" is typed. If it is a reference to page 0, a "0" is typed. If a 0 is not typed, the reference is to the current page.

EXECUTION TIME

The speed of the Reverse Assembler is input-output limited. The ASR-33 types a line in approximately 2.5 seconds. The high speed punch punches a line in approximately 0.5 seconds.

PROGRAM

Core Map

0-1200 : executable program

1200-1400: Reference table for operation code 7

1400-2000 : Reference table for operation code 6 (IOT)

2000-5400 : ASCII table of all, mnemonic codes.