DECUS

PROGRAM LIBRARY

DECUS NO. 8-213

TITLE 4K ALGOL

AUTHOR University of Grenoble

; o Submitted by: Charles Conley
1 COMPANY Digital Equipment Corporation
Maynard, Massachusetts

pate [April 11, 1969

; SOURCE LANGUAGE ALGOL
ATTENTION
i This is a USER program. Other than requiring that it conform to submittal and review standards,

no quality control has been imposed upon this program by DECUS.

warranty, express or implied, is made by the contributor, Digital Equipment Computer Users
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or
related material, and no responsibility is assumed by these parties in connection therewith.

i c The DECUS Program Library is a clearing house onIy; it does not generate or test programs. No

IDENTIFICATION
Product Code: DEC-08-KAYA-D
Product Name:. ALGOL-8

Date Created: March 31,1969

PDP-8|

LIBRARY

PREFACE

This manual has been written for ALGOL users with a 4K

or larger ®DpP-8.

The subset of ALGOL compiled by the system is SUBSET ALGOL
60 (IFIP)* with additional restrictions which are described in

Appendix B.

The manual is essentially a user's handbook and is not
intended as a ALGOL Primeé. Chapter 1 is included as a general
introduction to ALGOL~8. The reader who wishes to learn the
ALGOL language in greater depth should refer to one of the
several texts on the subject, such as *A Guide to ALGOL Programming®
by Daniel D. McCracken (published by John Wiley and Sons, New

vork).

This compiler was written by J. C. Boussard, D. Clauzel,
and X. Nguyen Dinh of IMAG (Institute of Applied Mathematics,
University of Grenoble).

This manual is preliminary and subject to change without

notice.

scommunications of the ACM Volume 7, No. 10, October 1964

pp 626-628 "Report on Subset Algol 60 (IFIP).

Communications of the ACM Volume 6, No. 1, January 1963,

pp 1-17 "Revised Report on the Algorithmic Language, ALGOL 60."

o

1.1
1.2
1.3
l.3.1
1.3.2
l.3,3

2.1
2.2
2.3
2.3.1
263.2
2.4
2,5
2,6
2.7
2.8
2.9

CONTENTS

CHAPTER 1

INTRODUCTION

ALGOL-8 Program Form
ALGOL-8 Input/Output
Sample Programs
Arithmetic Operators
Compound Statements

Blocks

CHAPTER 2
REPRESENTATION OF ELEMENTS
Integers
Real Numbers
Basic Symbols
Long Basic Symbols
Short Basic Symbols
Identifiers
Constants
Variables
Subscripted Variables and Arrays
Statements

Labels

1-1
1-3
1-3
1-3
1-7
1-10

2-1
2-1
2=-2
2~2
2=-2

2-3

2-3

2-4

2-4

3.1

3.1.1
3.1.2
3.1.3
3,1.4
3.1.5
3.2

3.2.1
3.2.2

CHAPTER 3

EXPRESSIONS

Arithmetic Expressions
Constants

Variables

Operators

Miisd Mode Expressions
Standard Functions

Boolean Expressions

Forms
Limitations
CHAPTER 4
DECLARATIONS
Variables
Arrays
Switches
Procedures
CHAPTER 5
STATEMENTS

Assigned Statements
GOTO Statements

FOR Statements
Conditional Statements
Dummy Statements
Comments

Sample Program

3-1
3-1
3-1
3-2
3-3
3-4
3-4
3-6
3-7

4-1
4-1
4-2
4-3

5-1
5-2
5-2
5-4
5=5
5-5
5~7

8.1

8.1.1
8.1.2
8.2

8.2.1
8.2.2
8.2.3
8.3

8.3.1
8s3.2

CHAPTER 6
INPUT/OUTPUT STATEMENTS

I/0 Statement Form
Output Format
Input FOormat

Text Output

New Line

CHAPTER 7

DIAGNOSTICS

cOmpilé Time Diagnostics.

Execution Time Diagnostics

CHAPTER 8

OPERATING INSTRUCTIONS

Compiler

Operation

Memory Usage

Operating System

Operation - No Functions Required
Operation - Functions Required
Memory Usage

Paper Tape Input Format

Compiler Input

Operating System Input

\V 2

6-1
6-2
6-2
6-2

7-1

. 7-6

APPENDIX A

ALGOL-8 BASIC SYMBOLS

APPENDIX B
RESTRICTIONS

APPENDIX C

TABLE OF ERRORS

APPENDIX D
ALGOL-8 SUMMARY OF COMMANDS

APPENDIX E

NOTES ON ALGOL

vi

Chapter 1
INTRODUCTION

An ALGOL-8 program includes elements (numbers and symbols),
expressions (arithmetic and RBoolean), statements, and declarations.
Precise definitions of these parts of an ALGOL-8 program are con-
tained in later chapters. Those elements which are needed to
write simple ALGOL-8 programs are introduced in the following

discussion,

1.1 ALGOL-8 Program Form,

ALGOL-8 programs start with a 'BEGIN' statement and conclude
with an ‘END' statement followed by a $ as shown below.
'BEGIN'
Body of ALGOL-8 Program

OENDI
$

The body of the ALGOL-8 program specifies the action to be
performed. For example, the body of the program could contain
statements to accept the input of data, perform some calculation,

and output the results,

The type of data (integer or real numbers) must be specified
before it may be used in an ALGOL-8 program. The declarations
' TNTEGER' and ‘REAL' are used to specify the type of number which

is represented by a symbol, as seen below.

'BEGIN'
‘REAL' A,B,C3
'"INTEGER' I,J,K;

OENDI *
$

The 'INTEGER' and 'REAL' statements, as well as all other ALGOL-8

gstatements are terminated by a semicolon.

once the variables are declared they may be used in ALGOL-8

program calculations. For example the following ALGOL-8 program
adds three numbers.

'BEGIN'

'INTEGER' A,B,C,SUM;

A1=5;

B1=27}

Cl=153

SUMs=A+B+C3

IENDG

$

Notice in the above program the difference between the variables
A, B and C and the variable SUM. A, B and C are integer constants
given an explicit value by an assignment statement, such as A1=53.,
(The colon must be used with the equal sign in an assignment
statement.) SUM is an integer variable whose value is determined

by running the program.

The constants of the previous program need not be assigned
the identifiers A, B and C. The same result could be achieved
through the following program where only SUM is declared as a
variable.

'BEGIN'
' INTEGER' SUM:
SUMi= 54274153

'END*
$

The preceding programs do not provide for the output of
results or for the substitution of input by the user. This may
be accomplished in ALGOL~8 through the READ and WRITE procedure

statements,

1.2 ALGOL~8 Input/Output

ALGOL-8 programs may use either the Teletype console or
the high-speed reader/punch as the input/output device for READ
or WRITE statements. The device to be used and the information
to be read or written is specified within parentheses after the
input/output procedure statement. The integer 1 specifies the
ASR 33 Teletype, 2 specifies the high-speed paper tape unit, as
seen in the following examples.

READ (1,1) The ALGOL-8 program will accept a value
for the variable I from the Teletype key-
board or paper tape reader.

WRITE (2,A,B,C) The ALGOL-8 program will punch the values
for the variables A, B and C on the
high-speed paper tape punch.

The variables must be declared before they are used in a READ or

WRITE Procedure Statement.

l.3 Sample Programs

The following sample programs are provided to illustrate
some of the features of ALGOL-8, and to acquaint the reader with

the language in general.

1.3.1 Arithmetic QOperators

ALGOL-8 programs may contain the arithmetic operators for
addition (+), subtraction (-), multiplication (*), division (/),

and exponentiation (+). The following program combines the READ

‘BEGIN' °'COMMENT®' ARITHMETIC DEMO;
*REAL' A,B,RSUM,RDIF,RPRD,RQUO;
*INTEGER' I,J,ISUM,IDIF,IPRD,I1QUO;
WRITE (1, "TYPE TWO REAL NUMBERS'")3 SKIP3

READ (1, A,B);SKIP;

RSUM:=A+B3 WRITE (1,A," PLUS
RDIF:=A-Bs; WRITE (1,A,'" MINUS
RPRD:=A*B3; WRITE (1,A," TIMES
RQUO:=A/Bs WRITE (15A,'" DIVIDED BY'sB,'='"5RQUO) 5 SKIP;
WRITE (1, "TYPE TWO INTEGERS"); SKIP;

READ (1, 1,J)3SKIP;

ISUM:=1+Js WRITE (1,1,'" PLUS

IDIF:=1-J; WRITE (1,I,'" MINUS
* IPRD:=I%*Js; WRITE (1,I," TIMES

1QUO:=1,/Js WRITE (1,1,'" DIVIDED BY'"sJ,"="",1QU0) ;5 SKIP;

‘END"

Example A

TYPE TWO REAL NUMBERS
2,3 .

?.200000%+31 PLUS

?.200000%+01 MINUS

P.200000%+01 TIMES

@.200000%+01 DIVIDED BY
TYPE TWO INTEGERS

2,3
2 PLUS 3=
2 MINUS 3=
2 TIMES 3=
2 DIVIDED BY 3=
Example B

TYPE TWO REAL NUMBERS
89,765

P.889999%+02 PLUS

?.889999%+02 MINUS

@.889999%+82 TIMES

@.889999%+@2 DIVIDED BY
TYPE TWO INTEGERS

?.300000%+01=
0.300000%+01+=
0.300000%+01=
0.300000%+01=

—

@.765000%8+03=
@.7650008+03=
B.765000%8+03=
D.765000%+03=

895,765
89 PLUS 765= 854
89 MINUS 765= -6176
89 TIMES 765= -1547
89 DIVIDED BY 765= 2

",B,'"="",RSUM) 5 SKIP;
",B,5'"=">RDIF); SKIP;
",B,'"=",RPRD) ;3 SKIP;

v,Js =", 1SUM) 5 SKIPs
v,Js"=",IDIF); SKIP;
",J,"=",1PRD); SKIP;

@.500000%+01
-0.100000%+01
?.600000%+01
D.666666%+00

2.853999%+03
-0.675999%+03
Q.680849%+85
P.116339%+00

Figure 1-1 ALGOL-8 Ariﬁhmetic Program

1-4

and WRITE statements with arithmetic operators. Two examples of

program output are also included. Following the listing the pro-

gram is described line by line.

Line 1

Line 2

Line 3

Line 4

Line 5

The 'BEGIN' statement must be the first element
of the ALGOL-8 program. The ‘COMMENT' statement
may be used to include comments to identify the
program in the source listing. Comments are not
typed during the running of the program,

All of the real number variables which are used
within the ALGOL-8 program are declared with the
‘REAL' statement.

The integer variables are déclared with the
statement 'INTEGER'.

The WRITE procedure statement is used to request
user input. Any text included within double
quotes is typed during the running of the program.

The SKIP procedure statement is used to generate a

" new line for typed output., (It is equivalent to

a carriage return and line feed on the Teletype
console.)

The READ procedure statement accepts the user
input to the ALGOL-8 program. The program will
not continue until the user types two real
numbers on the Teletype keyboard., Real number
input may be terminated by typing any keyboard
character other than a number, plus or minus

sign, period, or dollar sign.

Lines 6,7,8,9

Line 10

Line 11

Lines 12,13,
14,15

Line 16

Line 17

once the input of two numbers is received,

the ALGOL-8 program computes the various
arithmetic combinations and types the results.
The output of results 1is formatted by combining
output of text (included within double quotes)
and variables., Variables and text are separated
within the WRITE statement by commas. Each line
is terminated with a SKIP to allow the next
output to start on a new line.

The WRITE procedure statement on line 10 requests
the user to input two integers. The SKIP
generates a new line on which the input may be
typed.

The READ procedure statement accepts the user
input of two integers. The integers may be
terminated with any character other than a number.
The arithmetic combinations of the integers are
computed and typed in a similar manner to that
for the real numbers above.

The 'END' statement concludes the ALGOL-8 pro-
gram statements.

The ALGOL-8 program must be followed by a dollar

sign as the first character on a line.

The running of the program produces the output shown in

examples A and B of figure 1-1. The examples illustrate the

differences in ALGOL-8 representation of real numbers and integers.

1-6

The input of values was in all cases terminated by a carriage

return,

Real numbers are output in an exponential notation with the
number separated by a dollar sign (¢) from the exponential power
(base 10) by which it is multiplied.

Examples: '
_B.200099s Sl equals -.20PPPPxX1gl equals -2.P000
§.2000085-95 equals B.209gpAX18T° equals @.AgppH2

Integers are output as whole numbers, with up to four digits,

and a minus sign if the number is negative.

Equivalent results for integer or real number input are ob-
tained for the operations of addition and subtraction. Integer
multiplication does not check for overflow, and as evident in
example B, can yield incorrect results (e.g. 89 x 765 = -1547),
Integer division differs from real division in that, since the
result is not always an integer, the answer is always rounded off

to the nearest integer.

As evident in example B, real number representations in
ALGOL-8 are not always exact. For example, the number 89 is

approximated as a real number in ALGOL-8 by the number 88.9999.

1.3.2 Compound Statements

The example of figure 1-2 uses the multiplication operator
to generate the first ten powers of a number. The program
employs a FOR statement to allow repeated execution of a

grouping of ALGOL-8 statements. FOR statements have the form

PRSPPI

'FOR' E 'STEP' I 'UNTIL' F 'DO's

where E is an assignment statement (e.g., Vi=l)
I is an increment (e.g. 1)
F is a final value (e.g. 10)

8§ is a statement, compound statement, or block.

The expression after 'FOR' assigns an initial value to the
variable. The statement following 'DO! is then executed for this
assigned value. Once the statement is executed the variable is
incremented by the value following 'STEP' and the statement follow-

ing 'DO!' is executed for the new value of the variable. The vari-

able is repeatedly incremented and the statement is repeatedly

executed for all values up to, and including, the value following

'UNTIL®.

In the program of figure 1-2, the 'DO' is followed by a
compound statement. A compound statement is simply two or more
ALGOL-8 statements enclosed in statement brackets ('BEGIN' and
'END'). This group of statements is executed as if it were one
statement following the 'DO' There must be an equal number of

'BEGIN' symbols and 'END' symbols in every ALGOL-8 program,

The program simply requests a real number input and then
repeatedly executes the compound statement which computes the
powers of A. The statement Xi=A*X computes the next power of A
because X always equals the last power computed. Notice that X

had to be set equal to 1 before the compound statement was executed,

FOR WHAT NUMBER

0 .449999%+0@2
D +449999%+02
D .449999%+02
@ .449999%+02
0.449999%+02
0.449999%5+02
D +«449999%8+02
B.449999%+02
B +«449999%+02
D+«449999%+02

FOR WHAT NUMBER

(

'BEGIN' 'COMMENT' COMPUTE POWERS OF Aj; \
"INTEGER'V; 'REAL' A, X3 \
WRITE(1,'"FOR WHAT NUMBER WOULD YOU LIKE THE FI\ST TEN POWERS?');
X:=1;

READ (1,A); SKIP; \
'FOR' V:=1 'STEP' 1 'UNTIL'1@ 'DO’ {
*BEGIN’ ’
X:=A%xX;
WRITE (1,A," TO THE", V,'" EQUALS",X)3; g
SKIP; ;
"END*
SKIP3SKIP;
'END'
$

WOULD YOU LIKE THE FIRST TEN POWERS? 45.

TO THE 1 EQUALS B0 +449999%8+02
TO THE 2 EQUALS Q.2025003+04
TO THE 3 EQUALS 0.911249%+05
TO THE 4 EQUALS 0.410062%+07
TO THE 5 EQUALS 0.184528%$+09
TO THE 6 EQUALS @.830376%+10
TO THE 7 EQUALS B.373669%+12
TO THE 8 EQUALS B.168B151%+14
TO THE 9 EQUALS D+756680%+15
TO THE 19 EQUALS

D3405058+17

WOULD YOU LIKE THE FIRST TEN POWERS? 987.

D+.986999%+03 TO THE 1 EQUALS 2.986999%+03
0.986999%+03 TO THE 2 EQUALS D.974169%+06
D.986999%+03 TO THE 3 EQUALS D.961504%5+09
0.986999%+03 TO THE 4 EQUALS 0 .949005%+12
0.986999%+03 TO THE 5 EQUALS P.936668%+15
2.986999%+03 TO THE 6 EQUALS D.9244918+18
0.986999%+03 TO THE 7 EQUALS B.912472%+21
0.986999%+03 TO THE 8 EQUALS 2.900610%+24
0.986999%+03 TO THE 9 EQUALS 0.888902%+27
0.986999%+033 TO THE 18 EQUALS D.8T77347%+30
Figure 1-2 Program to Compute First Ten Powers

1-9

1.3.3 Blocks

The following sample program plots linear equations using a
block to perform the actual plotting. An ALGOL-8 block is simply
a compound statement which contains declarations.

'BEGIN'
INTEGER' I,J,K;
‘REAL' A,B,C;
'BOOLEAN' N,M;

[]
Statement
Statement

'END' *

The declarations made within a block are not applicable
outside the block. Thus local variables may be assigned which
have a value while the program is executing a given block but which
are not defined in an outer block. The use of the block is

illustrated in the program example of figure 1-3.

The first part of the program requests and accepts the real
coefficient and the real constant term of the linear equation
using WRITE and READ procedure statements. The horizontal axis
for the values of the equation is established with four WRITE
statements. The FOR statement is then used to plot the equation

using values of X from -10 to 10.

The block begins by declaring the variables which are used

exclusively within the block. The use of local variables in large

programs allows the ALGOL-8 programmer to efficiently use the
finite number of variables allowed in ALGOL-8, by freeing them

upon exit from the block.

Boolean variables are used to test for points which are

outside the range of the values.

Since the solution of the equation is a real number and the
number of spaces must be an integer (the upper bound of a FOR
statement must be an integer), the function ENTIER is used. ENTIER
converts a real number, N, to the greatest 1nteger, I (positive
or negative), such that I is less than or equal to N £.g9. ENTIER
(+5.9) =5; ENTIER (+6.%) =6; ENTIER (-4.32) = -5). The reader
should note that ENTIER is neither truncation nor rounding off,

although in some cases they will produce the same results.

A FOR statement within the block is used to plot the number
of spaces up to the point. 1In this case, the upper limit of the
FOR statement is an integer variable, rather than a specific

integer, allowing different spacing for each point plotted.

The program loops to its beginning with a GOTO statement which

permits the program to plot a series of equations without being

restarted.,

A sample running of the program is also shown in figure 1-3.
Notice that although the equation is linear, in this case the
graph only approximates linearity because “partial spaces" can-

not be plotted.

'BEGIN' °'COMMENT' LINEAR PLOT PROGRAM3;
*INTEGER' X3
'REAL"® Al1,B3

LIN: WRITE (1, "I'LL PLOT YOUR LINEAR EQUATION FOR YOU!'");SKIP;

WRITEC1,"WHAT IS THE COEFFICIENT OF X?');SKIP;
READ (1,A1)3SKIP;
WRITE (1,"WHAT IS THE CONSTANT TERM?'");SKIP;
READ (1,B)>3

SKIP3SKIP3 SKIP;

WRITE (1," -30 -20 -18 2')3
WRITE (1," 10 20 30'"); SKIP3

WRITE C1," t t *)3
WRITE (1," t * t) 3 SKIPs

*FCR*Xs=-1@ 'STEP'1 °'UNTIL'10Q 'DO'
'BEGIN' °*'COMMENT®' PLOT BLOCK3;

'INTEGER' V,PLOT:;-

'REAL "' CONST3;

‘BOOLEAN' B1,B2;

WRITE (1,X)3

CONST: =X*Al1+B+34;

PLOT:=ENTIER (CONST)3

" B1:=PLOT<2; B2:=PLOT>65;

'IF' B1 'THEN' 'GOTO' POINT'ELSE®
'IF* B2 'THEN'PLOT:=663
'FOR'V:=1 'STEP'1 'UNTIL'PLOT 'DO'WRITE (1,'" ')3
POINT:WRITE (1,'%')3SKIP3
'END*
SKIP3SKIP;3; SKIP3 'GOTO'LIN
'ENDI
$

I'LL PLOT YOUR LINEAR EQUATION FOR YOU!
WHAT IS THE COEFFICIENT OF X?
D.66667

WHAT IS THE CONSTANT TERM?
2

~-30 -20 -10 2 10 20

'
{HN T T T R T T I el
—PDWHUONONROI
* *
*
* *
*
* *
*
*

QOVARIUDHWND—-
*

—

I'LL PLOT YOUR LINEAR EQUATION FOR YOU!
WHAT 1S THE COEFFICIENT OF_X?

Figure 1-3 Linear Pl ot Program

1-12

Chapter 2

REPRESENTATION OF ELEMENTS

2.1 Integers

Integers are signed numbers (the positive sign is not always

expressed), written without a decimal point, in the range 4 2040.

Division between integers produces a real result. In ALGOL-8,
division between integers yields the closest integer. For example,
if J=8 and K=3, the division of J by K gives 2,6666 and the result

in ALGOL-8 is 3.

Integers are represented with one 12-bit word. The first bit
(bit #) is the sign bit and bits 1 through 11 contain the integer

magnitude.

Magnitude Bitf = Sign
g1 ese 11

2.2 Real Numbers

Real numbers are signed numbers (the positive sign is not
always expressed) of the decimal exponent form in the range
+ 0.32$617 to 4 0.31$-616 ($ indicates the multiplication by a

power of 10).

The forms represented by the following examples are allowed
in ALGOL-8 programs;j
-0.,1234 «5 1.2¢-2 (=.012)
5.0 -2.3 -0.1%10 =-1,000,000,000)

Real numbers are represented by three 12-bit words. The
first word represents the exponent and its sign. The second
word represents the higher order bits of the mantissa, and
the sign of the mantissa. The third word represents the lower

order bits of the mantissa.

Exponent Bit £ = sign
g1 eee 11

High Order Mantissaf—+] Bit # = sign
g 1 e 11

-{Low Order Mantissa

g 1 coe 11
2,3 Basic Symbols

Basic symbols are the predefined elements of an ALGOL-8
program. Long basic symbols are typed enclosed in single quotes,
while short basic symbols stand alone. Appendix A contains all

the permitted Basic Symbols and their representation in ALGOL-8.

2,3,1 long Basic Symbols

Some symbols and logical operators are represented by a
string of two or more letters enclosed in single quotes, They
are identified by their first two letters only, e.g., 'BE' and
'BEGIN' are equivalent.

Examples; IBEGIN' ' INTEGER' 'SWITCH'

2.3.,2 Short Basic Symbols

other basic symbols are represented by a single character
or, exceptionally, by two successive characters (a character

followed by an equals sign).

2-2

Examples: * multiplication
4 exponentiation
{= less than or equal to

2,4 Identifiers

An identifier is a name given to a variable in an ALGOL~S
program. An identifier must begin with a letter and may contain
only letters and numerals., The length of an identifier is not
limited but only the first four alphanumeric characters are
significant. For example, CAR15, CAR18 and CARl are interpreted
as the same identifier. For this reason it is good practice to

limit identifiers to four characters.

2,5 cConstants

Integer constants (and the whole number part of real constants),
must have an absolute valae less than or equal to 2040, when their

value is given explicitly in an ALGOL-8 program.

Examples: Integers Real Numbers
27 1.0
-2035 235,0850
5 -2'48

2.6 variables

ALGOL-8 variables are quantities which are referred to by
name (by its identifier) and are able to take on different values,
variables may be Boolean, integer or real type. Boolean variables
may not be subscripted. The possible values of a Boolean variable

are true and false,

Integer or real variables may be subscripted. (A subscripted
variable is a real or integer one-dimensional array, as described

in paragraph 2,7.)

‘Simple variables (not subscripted) have identifiers as

described in paragraph 2.4 (e.g. A, SUM, INTS).

2.7 Subscripted variables and Afrayé

Subsc. ipted variables permit the representation of many
quantities with one identifier. A subscripted variable is one
dimensional array (the only type of array allowed in ALGOL-8). It

may be an array of integers or real numbers.

subscripted variatles have identifiers folllwed by brackets
enclosing the subscript (e.g. suM [I], X[J]). The subscript is an

integer and its lowest value must be either # or 1.

NOTEs The brackets [= shift/K
and
1= shift/M

on the ASR 33 Teletype Keyboard,

2.8 Statements

Statements are commands to the computer to carry out
operations. ALGOL-8 statements must be terminated with a semicolon,
Examples:
'GOTO! START;
‘IF' A=B 'THEN' Xi=1l 'ELSE' Xi=£;
Compound statements are several statements grouped together and

enclosed between the statement brackets ‘BEGIN' and 'END'.

2,9 labels

A label is used in an ALGOL-8 program to reference or identify
statements in a program. It must be an identifier and must be
followed by a colon.

Example;

START: READ (1, I)s

Chapter 3

EXPRESSIONS

3.1 Arithmetic Expressions

Arithmetic expressions may include constants, variables,

operators and functions. For example, the arithmetic expression

-B + 1/ (B2 -4ac)
2A

may be written as an ALGOL-8 arithmetic expression
(=B + SQRT (B4 2-4*a*C))/(2*A)
where 2 and 4 are constants; A, B, and C are variables; *, 4 ,

-, and + are operators; and SQRT is a function.

3.1.1 Constants

Constants used in arithmetic expressions may be either

integer or real,

Integers may be of the following forms (i.e. I £2040),
5 -7 2018
Real numbers of the following form may be used in arithmetic
expressions,
+ a.b§+c
where a = whole number part (< 2040)

b

fractional part (6 digits or less)

c exponent, base 10 (-616<c<£617)

3,1.2 Vvariables
A variable used in an arithmetic expression is one or more

alphanumeric characters which obey the following rules,

a) The first character must be a letter.

b) Spaces are ignoréd.
3) only the first four characters are significant, and

therefore must be unique.

3.1.3 Operators

The operators in arithmetic expressions are symbols repre-
senting the common arithmetic operations, plus left and right

parentheses which serve as delimiters.

Arithmetic expressions in ALGOL-8 are evaluated from left
to right with an an additional priority rule for operators.
Priority symbols
1 (»)
2 4
3 *, /
4 +, —
Thus exponentiation (4) is performed before either multiplication
or division, which are performed before addition or subtraction,
parentheses have the highest priority and may be used to give

priority to lower operators.

Operations of the same level are performed left to right.
Examples A*B + C/D - E*FA G
= (a*B) + (c/D) - (E* (F4G))
Two arithmetic operators must not be written side by side. Thus
A/-B is not a legal ALGOL-8 arithmetic expression while a/ (-B) is

legal. All signed exponents must be enclosed in parentheses to

separate the exponentiation sign (1) from the sign of the

exponent (+ or -).

- pivision (/) and exponentiation (}) are considered real
operators. For small powers of a variable such as X4 2, or x%13,
it is preferable to use X#*X, or X#X#*X, 8o that the functions
need not be loaded (see paragraph 8.2). The exponentiation operator
(%) in ALGOL-8 is.undefined when the variable is zero or a fra<tion.
The programmer must therefore specially treat such cases. The
following examples demonstrate the importance of correctly
writing the arithmetic expression. Different placements of

parentheses can yield very different results.

ALGOL EXPRESSION ALGEBRAIC EQUIVALENT
A+B*X-0C/X42 = A+BX-%
X
(A +B) *X -(c/x)+2 = AX + BX - c2
2
(A +B) *X -2C) /X242 = AX + BX -AC -BC
%2
* X- = a,B -¢
A+ (B* X-C) / X%2 - 2

3.,1.4 Mixed Mode Expressions

variables of real and integer type may be mixed in an
expression. 1Integers are converted to reals before calculations.
The form of the expression may affect the result.

Example: (A is real, I and J are integers)

a) A+I+J
I is converted to real and added to A, then J
is converted to real and added to the sum.

b) A+(I+J) _
I and J are added as integers converted to real
and added to A.

3,1.5 8Standard Functions

The follbwing standard functions are provided in ALGOL-8.

The argument must be a non-dimensioned real - variable except

the argument of REAL. Constants are not allowed as arguments

(eege: Y:=SIN (.5); is illegal, but PHI=.5; :=SIN (PHI); is
legal).
SQRT (x) - Square Root of x
SIN (x) - Sine of x in radians
cos (x) - Cosine of x in radians
ARCT (x) - Arctangent of x
EXP (x) I Exponential of x
LN (x) - Logarithm (natural) of x
ENTIER (x) - Largest integer not greater than x
REAL (I) - Converts integer I to a real number
1 for positive x
SIGN (x) - Integer{ O for zero x
-1 for negative x

ABS (x) - Absolute value, or modulus of x

The program of figure 3-1 illustrates one use of functions
in ALGOL-8, to generate a listing of values. A later example
(paragraph 5.3) uses functions to generate a table of values.
ALGOL~8 functions may be used within expressions and calculations
as well, as long as the argument of the function is a real variable

and not a constant.

3.2 Boolean Expressions

ALGOL-8 programs may use the following Boolean operators to

form Boolean expressions,

'TRUE used to assign a logical value to a Boolean variable.
'FALSE' used to assign a logical value to a Boolean variable.
'NOT' used to negate a Boolean variable

‘*AND’ used to combine Boolean variables

‘OR’ used to combine Boolean variables

*IMP’ implies - used to combine Boolean variables

'EQU’ equivalence - used to combine Boolean variables.

3-4

*BEGIN® °*COMMENT' FUNCTION COMPUTERS
*REAL' A»B3 'INTEGER' 13
SKIP3
START: READ (1,A)3SKIFP;
WRITE ¢1s "FOR A VALUE OF',A)3SKIP;
WRITE (1, " SINE COSINE ARCTANGENT'") 3 SKIP3
B:= SINCAY3 WRITE (1,B)3
B:= COSCAY3 WRITE (1,B);
B:= ARCT(AY3; WRITE (1,B);SKIP;
WRITE (1, " NAT LOG EXPONENTIAL SQR ROOT'") ;3 SKIP;
B:=LN(AY3 WRITE (1.,B); ’
+=EXP (A)3 WRITE (1.B);
B:= SQRT (A); WRITE (1,B);SKIP;

WRITE (1," INTEGER PART REAL PART SIGN') 3
WRITE (1," ABSOLUTE VALUE''); SKIP3

1:=ENTIER (A)3 WRITE (1,1)3;

B:=REAL (I); WRITE (1,'" ° **5>B)s

¢=SIGN (A)3 WRITE (1,B)3
:=ABS (A)3 WRITE (1,B);SKIP;SKIP;
'GOTO" START

'END’
- $
?.01
FOR A VALUE OF 7.100000%-01
SINE COSINE ARCTANGENT
7 .999982%-02 0+999949%+00 $.999965%-02
NAT LOG EXPONENTIAL SQR ROOT
-0 .4605165+01 ©.101004%+01 3.999999%-01
INTEGER PART REAL PART SIGN ABSOLUTE VALUE
2 ?.000300%+00 ?.100000%5+01 2.100700%-01
-12.5731
FOR A VALUE OF =-8.1257313%+02
SINE COSINE ARCTANGENT
-3.672908%-02. ©0.999977%+00 -0.149142%5+01
NAT LOG EXPONENTIAL SR ROOT
?.2531555+01 ?».346395%-925 ?.354585%8+01
INTEGER PART REAL PART SIGN ABSOLUTE VALUE
-13 -0.129999%+02 -0.1000005+01 7.125731%+02
1.0%-610
FOR A VALUE OF ?.9999613-610
SINE COSINE ARCTANGENT
?.309548%~563 0.999999%+00 ?.238813%-610
NAT LOG EXPONENTIAL SQR ROOT
-0.1404573+0 4 ?@.400000%+612 ?.999980%-385
INTEGER PART REAL PART SIGN ABSOLUTE VALUE
0 ?.000000%5+002 ?.100700%+01 ?#.999961%5-610
3.141592
FOR A VALUE OF 7.314159%+01
SINE COSINE ARCTANGENT
?.000000%+08 -3.999999%+00 0.12626235+01
NAT LOG EXPONENTIAL SQR ROOT
B.114472%+01 D.2314063+02 P.177245%5+01
INTEGER PART REAL PART SIGN ABSOLUTE VALUE
3 ?.300300%+01 0-100030%+01 B.314159%5+81

Figure 3-1 Function Computer Program
3-5

For all combinations of values for Boolean variables Bl

and B2, the following table gives the values of the above

combinations.

Bl B2 '‘NoT'Bl| B1'AND'B2| Bl' oR'B2|Bl'IMP'B2 | B1'EQU'B2
true true false | true true true true -
true false false false true false false
false true true false true true false
false false true false false true true
3,2.1 Forms

Boolean expressions may be of

a)

A single Boolean variable

the basic symbol 'NOT'.

b)

'NoT'Bl

where Bl

the following forms:

optionally preceded by

is declared Boolean

logical operators (‘'AND', 'OR', 'IMP', or 'EQU‘').

B31=Bl
B41=Bl

B531=Bl

'AND' B2;
‘OorR' B3;
'IMP' B2;

B61=B4 ‘'EQU' B2:

Two Boolean variables connected by one of the four

where Bl, B2, B3, B4, B5, and B6 are declared Booleans,

c)

expressions connected by one of the six relational

operators =, #,>=,

X4Y4Z> = 5

AH#B

L=y, >y

or £ .

A relation comprising two simple integer arithmetic

where A,B,X,Y, and 2 are integers,

d) A relation comprising two simple real arithmetic
expressions connected by one of the two relational
operators £ or > .

X+Y42 > 5

A< B+l where A,B,X,Y, and 2 may be integers
or real numbers.

A Boolean expression can be used directly in a conditional
statement or can be used to assign a logical value to a Boolean
variable as seen in the two following examples,

'IF' I-J>K 'THEN' 'GOTO' START}

Bly=I-J< 5#K; ‘IF' Bl 'THEN' ‘'GOTO' START}
Tn the second example above, Bl is true when I-J<£5*K3;. Bl is

false otherwise., The GOTO statement is performed when Bl is true.

3,2,2 Limitations

a) There are no Boolean arrays in ALGOL-8.

b) The multiple assignment of a Boolean expression value
to a number of Boolean variables is not allowed. For
example,‘"Bls=I:>J; B2:=I>J}" is acceptable while
wgly=B2:1=I>J3" is not acceptable.

c) The logical values $7RUE' and 'FALSE' can be used only
to assign logical values to Boolean variables.

Bli= 'TRUE'; is permitted, while

I-3> Ki= 'FALSE' is not permitted.

3-7

e ennpp e

Chapter 4

DECLARATIONS

Declarations are used to specify the properties of quantities
used in an ALGOL-8 program and to associate these quantities with
jdentifiers. Declarations must appear at the beginning of a
block (i.e. before any statements which cause operations to be

performed by the block).

4,1 variables

variables may be real numbers, integers or Boolean. Multiple
variables of the same type may be declared in one statement by
separating the variables by commas and terminating the statement
by a semicolon.
Examples
'BEGIN'

'INTEGER' - N;

'REAL' A,B,Cs

'BOOLEAN' Bl,B2Z;

IENDI *
$

4,2 Arrays

ALGOL~-8 arrays may be either real arrays or integer arrays.
(The type of array, integer or real, must be declared also.) The
lower bound of the array must be either g or 1. The upper bound
must be an unsigned integer or a simple integer variable, as seen
in the example below. The bounds of the array are enclosed in

square brackets and separated by a colon.

PRI

Examples
'BEGIN'
YINTEGER' N3 _ _
'REAL' ‘'ARRAY' Ax[l:110], ay[pi13];
'BEZIN
'INTEGER' 'ARRAY' INTX [;aN];
'END!
'END'
$

As illustrated in the preceding example, if the upper bound of
an array is an integer variable it must be declared and assigned

a value in a preceding block prior to its use as an array bound.

4,3 Switches

Switches may be used in an ALGOL-8 program to conditiohally
transfer control to other areas of the program, The switch is
established by the declaration 'SWITCH'. The switch is used to

conditionally transfer contrel with a GOTO statement.

Examples

'BEGIN'
'INTEGER' I3
'SWITCH' CHANGE$=BPOS,BNEG,BZERO;

'GOTO' CHANGE [I];
BPOSiStatement Pl
Statement P2;

BNEG:Statement N1;
Statement N2;

L]
BZERO3iStatement Z1;
statement 22;

'END A

The statements identified by the labels included in the switch
declaration are executed depending upon the value of I. If I=1,
the statements beginning with Pl (labeled BPOS) are executed.

If I=2, the statements beginning with N1 (labeled BNEG) are
executed. If I=3, the statements beginning with Z1 (labeled

BZERO) are executed.

The statements to which control is transferred may be simple

statements, compound statements or blocks.

If 1#1,2, or 3, the statement 'GOTO' CHANGE [1]; is undefined.

4.4 Procedures

There are no usexr procedures in ALGOL-S8.

Chapter 5

STATEMENTS

The units of operation within the language are called

statements.

Statements may be of the following types:
1) Assignment statements

2) GOTO statements

3) conditional statements

4) FOR statements

5) Dummy statements

5.1 Assignment statements

An assignment statement relates a variable V to an arith-
metic expression E by means of the symbol;=, as in the following
example:

Vi= Ej3 -
The above statement means that the value of expression E replaces

the value of variable V.

Multiple assignment statements can be done when more than
one variable is to be given the value of the same expression.
You may writes

Vlii= V2i1= V3i1= E;
If the type of the variable (i.e. integer or real) is not the

same as the expression, the result of this expression will be

_converted into the type of the variable.

5.2 GOTO statements

A GOTO statement may be of the following forms:
a) 'GOTO' LABEL;
b) 'GOoTO' SWITCH [INDEX] ;
where LALEL is used to reference a pbint in the ALGOL program
either within the block of the GOTO statement or in an outer
block, SWITCH is a declared switch designator, and INDEX must
be a simple integer variable or an unsigned integer.
Example1
'BEGIN' 'COMMENT' BLOCK 13
'INTEGER' I;
START: READ (1,I);
'BEGIN' 'COMMENT® BLOCK 2}
'SWITCH' POINT i= LOOP,EXIT;
'‘GoTo! POINT [Il;
LOOF$WRITE (1, "LOOP");3;SKIP;
'GOTO' START
'END' BLOCK 2;
EXIT:WRITE (1, "EXIT");SKIP;
'END' BLOCK 1
$
In this example, 'GOTO' START leads from the inner block (2)
into the outer block (1) 'GoTo' POINT [I] is equivalent to
'GoTo! LOOP for I=1l, or 'GOTO' EXIT for I=2, If the value of
I is less than 1 or greater than 2, the 'GOTO' POINT [I]

statement is undefined.

5.3 FOR statements

The FOR statement is in the following form
'FOR' Vi= A 'STEP' B 'UNTIL' C 'DO' S
where the controlled variable V ,must be a simple integer
variable, the elements A, B, and C can be in the following

forms:

5-2

a) a signed (minus only) or unsigned integer

b) a simple integer wvariable

and § is a statement

The FOR statement can be self-imbedded since the statement

S may itself be a FOR statement.

NOTE: The 'WHILE' baesic symbol of the ALGOL
language is not permitted in ALGOL-~8.
Thus ALGOL-8 programs may not use
'WHILE' to terminate FOR statements,
'BEGIN' 'INTEGER' I; 'REAL' F>R,C»S;
WRITE (1," DEG SIN C0S');
SKIP; SKIP;
F:=3.14159/18%;
'FOR"’ $=@ 'STEP' 10 'UNTIL' 9@ 'DO’
'BEGIN' R:=I%F;
C:=COS(R);
S:=SINCR);

WRITE (1,1,5,C);SKIP
'END'

'END’

DEG

Figure 5-1

10
20
30
40
50
60
72
80
90

SIN

0 .000020%+00
P.173648%+00
D .342019%+00
@.499999%+00
D .642787%+00
P .766043%+00
D.B66D24%+00
D .939692%+00
D .984807%+00
B .999999%+00

COS

D .999999%+30
D .9848075+00
0 .939692%+39
D .866PA25%+00
B.766044%+00

D .642787$+00

0 .500000%+90
0D .342020%+00
©.173648%+00
8 .953673%-06

A FOR statement used in a Program

5.4

Conditional statements

A conditional statement may be of the following forms;
a) 'TIF' Bl 'THEN' Sl
b) 'IF' B1 'THEN' S1 'ELSE' S

c). ‘IF' Bl 'THENM' S2

where Bl is a Boolean expression of one of the forms given in

Chapter 3.

Sl is an unconditional statement, S2 is a FOR statement,

S is a statement.

The conditional statement can be self-embedded since the

statement S may itself be a conditional statement.

The embedding levels of FOR statements and conditional

statements are interdependent (controlled by the same stack).

The total number of conditional and FOR statements that can be

accommodated at one time is 18,

'BEGIN' 'COMMENT® CONDITIONAL DEMO;

'INTEGER® 1,J;

START:READ (1,1.,J);

'END’

'IF’I>J 'THEN'WRITE (1,"FIRST NUMBER 1S5S GREATER.');
'IF'I<J "THEN' WRITE (1,'SECOND NUMBER IS GREATER.') 'ELSE'
WRITE (1,"THEY ARE EQUAL.');

'GOTO"' START;

Figure 5-2 A Conditional Statement used in a Program

5-4

5.5 Dummy Statements

A dummy statement produces no executable code. It may

be used to place a label.

The dummy statement is allowed just before the basic symbol
'END' to label it or to end the last statement of a compound
statement or a block, by a semicolon.

Example:

'BEGIN'
'REAL' A,B3;
'"INTEGER' I,J1
READ (1,A,I)s

'BEGIN'
tIF! I=J 'THEN' 'GOTO' EXIT;

Bi=A*A*A;

EXIT: «— pummy statements
'END'

In this example, there are dummy statements before each basic
symbol 'END'. The semicolon after WBi=A*A%A" is unnecessary
and is considered a dummy statement. The last basic symbol

'eND' is labeled by the dummy statement EXIT.

5.6 Comments

comments are added to ALGOL-8 programs for the user's
convenience. They may be used to identify the function of
statements, blocks, etc., within an ALGOL~-8 program. They pro-

duce no executable code.

There are two forms of commentsi

a) Comments may be introduced between declarations
or statements by using the basic symbol 'COMMENT'.
These comments may have any length and may contain
all characters except the semicolon, which necessarily stops
the comment.
b) Comments may be introduced after the basic symbol
'END! without using the symbol 'COMMENT®.
These comments are ended by one of the following
three basic symbols:

s , 'END'! or 'ELSE!

or the dollar sign at the end of the program,

The comment length is also unlimited but, in addition to
the semicolon, the single quote is not an allowed character.
(it serves to form the basic symbol 'END' or 'ELSE' which
stops the comment).

Examples

'BEGIN' 'COMMENT' TEST DYNAMIC ARRAY;
'INTEGER' 1,J,K3
READ (1515J)3
'COMMENT' CALCULATION OF SIZE;

Kel+Js
*BEGIN' 'COMMENT' K IS USED AS THE;
*COMMENT' UPPER BOUND OF THE ARRAY:;
'ARRAY ' TABLE [PD:K1J;
'FOR' J:=@ 'STEP'" 1 'UNTIL' K 'DO'
'END' BLOCK 2
'END' TEST:;

$

The semicolon which stops the comment following the last

basic symbol 'END' of the program is optional,

5-6

5.7 Sample Program

The following sample program illustrates all of the
statements introduced in this chapter. The program is designed
to plot linear, quadratic, and cubic equations. A switch is

used to h~ndle the three different cases.

A conditional statement with Boolean variables is used to
determine that the equation can be plotted by the program, i.e.
it is linear, quadratic, or cubic. A FOR statement controls

the number of executions of the block which plots the equation.

I WILL PLOT YOUR EQUATION FROM X=-10 TO X=10.
WHAT IS THE HIGHEST POWER OF X?

3

I'LL PLOT YOUR CUBIC EQUATION!

WHAT 1S THE COEFFICIENT OF X CUBED ?

el
WHAT IS THE COEFFICIENT OF X SQUARED ?
Me5S
WHAT 1S THE COEFFICIENT OF X?
_5.
WHAT IS THE CONSTANT TERM?
..2.
-39 -29 -10 7 10 29
1 T 1 T T 1
-10 *
-9 *
..8 *
-7 *
-6 *
-5 *
-4 b 3
-3 *
_2 *
_] *
2 *
1 *
2 *
\ 3 *
’ 4 * .
¥ 5 L3
P 6 *
i i 7 *
; 8
9
1A

Figure 5~3 Sample Program Output

5-7

¥*

'‘BEGIN'

ASK:

LIN:

QUAD:

CUBIC:

TWO:

ONE:

GRAPH:

'END"

'COMMENT' PLOT PROGRAM3;

'INTEGER' XHIGH, X3

'REAL 'A1,A2,A3,B;

'BOOLEAN'HIGH,LOW:;

'SWITCH'CONTROL:=LIN,QUAD,CUBIC; SKIP;

WRITE (1,1 WILL PLOT YOUR EQUATION FROM X=-1@ TO X=1@.')s SKIP;
WRITE (1,"WHAT 1S THE HIGHEST POWER OF X?'");SKIPs

READ (1,XHIGH) 3 SKIP;

HIGH:=¥HIGH>35 LOW:=XHIGH<13;

'IF'HIGH °'OR' LOW 'THEN'

"BEGIN
WRITE €1,"I'M SORRY, I'M NOT SMART ENOUGH TO *);SKIP;
WRITE (1,"PLOT", XHIGH,"TH DEGREE EQUATIONS!');SKIP;
WRITE (1,"WOULD YOU LIKE TO TRY AGAIN?");3SKIP;
"GOTO' ASK;

"END"' '

'‘ELSE' 'GOTO'CONTROL [XHIGHI;

WRITE (1, '"I'LL PLOT YOUR LINEAR EQUATION FOR YOU!'")3SKIP;
A2:=A3:=0.0;

'GOTO"' ONE3;

WRITE (1,"I'LL PLOT YOUR QUADRATIC EQUATION FOR YOU'");SKIP;
A3:=0.0;

'GOTO' TWOs

WRITE (1, "I'LL PLOT YOUR CUBIC EQUATION!');SKIP;

WRITE (1,"WHAT IS THE COEFFICIENT OF X CUBED ?'); SKIP;
READ (1, A3)3SKIP;

WRITE (1, "WHAT IS THE COEFFICIENT OF X SQUARED ?');SKIP;
READ (1, A2);SKIP;

WRITEC1,"WHAT IS THE COEFFICIENT OF X?'");SKIP;

READ (1,A1)3SKIP;

WRITE (1,'"WHAT IS THE CONSTANT TERM?'");SKIP;

READ (1,B)3

SKIP3SKIP3 SKIP;

WRITE (t,'" -30 -20 -10 2'');
WRITE (1," 10 20 30'") ;5 SKIP;

WRITE (1," t * t 1)
WRITE (1," 1 t t'") 3 SKIP;

'FOR'X:=-10 'STEP't 'UNTIL'1@ 'DO" :
'BEGIN''COMMENT' PLOT BLOCK (NO. SPACES TO ORIGIN=34);
‘INTEGER' V,PLOT:;
'REAL " CONST:;
'BOOLEAN' B1,B23;
WRITE (1,X)3
CONST:=X*kXkXkA3+X*kX*kA2+X*kA1+B+34;
PLOT:=ENTIER (CONST);
‘B1:=PL0OT<2; B2:=PLOT>65;
'IF' Bl 'THEN' 'GOTO' POINT'ELSE®
‘IF? B2 'THEN'PLOT:=663
'FOR'V:=1 'STEP'1 'UNTIL 'PLOT 'DO'WRITE (1,'" '");
POINT:WRITE C1,"*")3SKIP;
'END’
SKIP3SKIP;s;SKIPs 'GOTO'ASK

Figure 5-4 Sample ALGOL~8 Program
5-8

Chapter 6

INPUT/OUTPUT STATEMENTS
l

ALGOL~-8 programs may use either the ASR-33 Teletype or a

high speed paper tape reader/punch as an input/output device.

6.1 I/0 statement Form

Input/Output statements in ALGOL-8 are of the form;

Function (Unit, variable List)

where
Function - = READ or WRITE
Unit = 1 (ASR-33 Teletype) or 2 (high speed
reader/punch).
Variable List = One or more simple or subscripted
variables, separated by commas.
Example:

'BEGIN'
'INTEGER' S; 'INTEGER' 'ARRAY' A[l: 18];

'FOR' Ss=1 'STEP'l ‘'UNTIL' 10 'DO'
READ (2, A[S]);

lENDI.

The above READ statement means that the 10 values of the
integer array A Qill be read from paper tape on the high speed
reader, The ALGOL-8 program which executes this statement will
advance the paper tape and accept the values of .these 10

variables in the USASCII code.

6.2 Output Format

There are no ALGOL-8 format statements. The output formats
for integers and real numbers are as follows:
Integers - space, sign and up to 4 digits.
€.g, -1234
Real numbers - 2 spaces, s8ign (if negative), @,decimal
point, 6 digits, $, sign, 2 or 3 digits
e.g. = ~-f.123456$+87

6.3 TInput Format

The input format for ALGOL~8 programs is free form (a number
may be typed in any form as long as it does not exceed the range
of the variable type). Input to the operating system may be in
parity or non-parity USASCII format (paper tape or keyboard
initiated). Blank tape, rubout and line-feed characters are
ignored. Spaces are also ignored except in text strings (see 6,4

Text Output)..

Input of data to the operating system in response to a
READ procedure statement may be terminated by any character which
is not a number, sign, decimal point or dollar sign (indicating
the exponent). A <« (SHIFT/0) typed before a terminator deletes

*he item being input,

6.4 Text Output

Alphanumeric characters included within double quotes may
be elements of the variable list of a WRITE statement, The
WRITE statement will type all characters which are included in

the double quotes. Thus the WRITE statement may output text

or format data by supplying sPacés within quotes.,
Example;s

WRITE (1, "X= ", X, " XPRIME= ", XP);

6.5 New Line

The output of text and data may be formatted on separate
lines by the SKIP sfatement, which causes the Teletype carriage
to be returned and a new line of output supplied. The following
example prints the values of X, Y, and Z under their respective
headings.

Examples
WRITE (1, " X Y Z");

SKIP;
WRITE (1 , X, Y, B);

SO

P———

Chapter 7

DIAGNOSTICS

7.1 cCompile time diagnostics

Whenever an error is detected during the compilation of an

ALGOL-8 p-ngram, the compiler prints an error message.

After this detection, no recovery is possible. The user

must correct the error, reinitialize the compiler, and restart.

An error message is printed as follows:
plod Yy zz
xx is the diagnostics code, yy is the line number where the error

has been detected and zz is the character number in this line.

Generally, line numbers and character numbers will quickly
determine the origin of an error. But it happens that the
discovery of an error may occur after the latter., For example, in
the following line:

'BEGIN' ‘INTEGER I, J, K,; 'REAL' A, B, C3
A quote is missing after INTEGER but it would not be found before
the detection of a second quote after REAL. Thus the character
number would indicate an error after REAL, rather than the actual

error after INTEGER.

The following is a list of the error codes typed by ALGOL
during compilation.

'] Long Basic Symbol Error

*The first single quote of a long basic symbol is not found.

*The long basic symbol is not found.

Identifier Error

*An identifier is not declared in a statement,
*An identifier does not begin with a letter,

*A left bracket is omitted in a subscript variable of a

statement.,

Declaration Error

*A declaration is not ended by a semicolon.

*The long basic symbol 'REAL' or 'INTEGER' is followed by
a long basic symbol other than 'ARRAY'.

*The program contains a Boolean array declaration which
is not allowed in ALGOL-S8.

*A left bracket or a right brackeg is omitted in an array
declaration.

*The colon separating the lower and upper bounds is
omitted.

*The ﬁpper bound is an integer variable which is declared
in the same block of the array identifier.

*The lower bound is neither @ nor 1.

Multiple Declaration Error

*The same identifier is declared more than once in the
same block.

Statement Error

*The long basic symbol beginning a statement is not one

of these following long basic symbols:

'BEGIN' (compound statement or block)
o 8 (conditional statement

'FOR ! (for statement)

‘coro* (go to statement)

'END! (dummy statement)

*The input-output procedure statement READ, WRITE, or

SKIP is not found.

*A conditional statement is found Jjust after the long basic
symbol ‘'THEN'.

*The statement following the long basic symbol 'ELSE' does

not correspond with the unconditional statement following

the long basic symbol 'THEN',

Statement End Error

*A statement is not ended by one of the following basic
symbols;:
Either or 'END' or'ELSE‘

Colon and Equals Sign Error

*The colon and equals sign representing the basic symbol =
are omitted in the following cases;
*In a switch declaration, after the switch identifier.
*In a FOR statement, after the controlled variable.

Index Error

*In an array declaration, the upper bound is neither an
integer variable nor an unsigned integer.
*In a statement, a subscript is neither an integer variable

nor an unsigned integer,

*In a GOTO statement with a switch designator, the subscript

is neither an integer variable nor an unsigned integer.
*A right bracket is omitted after the subscript.
*In a FOR statement, the controlled variable is not an

integer variable.

8

9

10

r

11

12

*In a FOR statement, the initial value, the step value or
the final value is neither an integer variable nor a signed
(minus only) or unsigned integer.

constant Outside Range

*The value of an unsigned integer is greater ihan 2040
when used explicitly as an ALGOL-8 program constant.
*The integer part of a real number is greater than 2040
when used explicitly as an ALGOL-8 program constant.

Simple Boolean Expression Error

*One of the simple arithmetic expressions of a relation
is not an integer type.

*In a Boolean assignment statement, the long basic symbol
beginning the Boolean expression is not one of the
following:

'TRUE', ‘'FALSE', or ‘'NOT'

*The variable following a logical operator ('NOT', ‘AND',
‘OrR', 'IMP', 'EQU') is not a Boolean variable.

*In a relation, a relational operator is omitted.

GOTO statement Error

*The identifier following the long basic symbol 'GOTO'

is neither a label nor a switch identifier.

*Labels referenced by the program remain undefined at the
end of the program.

BEGIN - END Error

*There are too many long basic symbols 'END'. Each
'BEGIN' must be paired with an 'END'.

Capacity Overflow Error

*One of the limitations described in Appendix B is exceeded,

[
(93]

14

15

16

17

*More than 18 conditional and FOR statements were in use
at one time in the user program.

*The arithmetic expression being compiled is too complex
for ALGOL-8 (stack overflow).

Assi_ament Statemgnt Error

*The assignment operator (i=) is found in the middle of
an arithmetic expression.

*The equals sign is not found after a colon in a multiple
assignment statement.

Real Number Error

*The exponent of a real number is not properly written.,

Read or Write Error

*The procedure statement with parameters is neither READ
nor WRITE.

*The first parameter of READ or WRITE is neither 1 nor 2.
*A comma which separates parameters is omitted.,

*One of the READ parameters is not an identifier.

*One of the WRITE parameters is neither an identifier nor
a character string enclosed between double quotes.

*The identifier parameter of a READ or WRITE procedure
sgatement is neither real nor integer.

*A left bracket is omitﬁed in a subscripted variadltle,
*The right parenthesis which ends the READ or WRITE procedure
statement is omitted.

Arithmetic Expression Error

*An operator is missing between two operands,
*Two operands are found consecutively.

Parenthesis Number Error

*The number of left parentheses is not equal to the number

7-5

of right parentheses in an arithmetic expression.

18 sStandard Function Activation Error

*The parameter of the standard function is not a simple
variable,
*The left or right parenthesis is missing,

*The parameter is not a real number except for the

function REAL.

7.2 Execution Time Diagnostics

Errors detected at the time of program execution in ALGOL-8
cause the following error message on the Teletype printer:
OPS n
The error codes (n) are given below. When an error condition is
encountered at execution time, the ALGOL-8 program will halt,
If recovery is possible (as noted below), the user may press the
CONT switch of the computer console and the program will resume

execution,

TG PR A

Error
Code

Condition
User array size exceeds the avail-
able space,

Division by zero has been attempted
in the user program

Integer input outside acceptable
range

Attempt to convert a real number
to an integer which is outside the
acceptable integer range,

Attempt to take square root of a
negative numbar,

Attempt to take logarithm of a
negative number,

Switch index in users program is
undefined,

Users program demands functions
which have not been loaded,

77

Recovery
No recovery
possible,

Division is
performed,

Input ignored.
The real number
is converted to

zZero

Square root is
taken of the

modulus,
Logarithm is
taken of the
modulus,

Index is taken

as 1,

No recovery
possible.,

Chapter 8

OPERATING INSTRUCTIONS

8.1 cCcompiler

The compiler consists of 2 paper tapes -

ALGOL Compiler DEC~08-~-KAlA-PB

ALGOL Compiler Reinitialization DEC-08-KA2A-PB

The compiler will only run in Field @, since it uses the
program interrupt facility. The compiler iust be reinitialized
with the second tape, after each compilation, before another

compilation is attempted.

8.1.1 Operation)

The operation of the compiler is given in the following
steps which are summarized in the accompanying flow chart
(figure 8-1).

a, load compiler with binary loader

b. load address 400 and start

c. the program types OPT -

The options are,
R - Input/output on high speed reader/punch
T - Input/Output on low speed reader/punch
d. élace the source program in the appropriate reader,
turn on the appropriate punch and type R or T.

e, start Low Speed Teletype reader (if T has been typed)

f., the program halts at loc. 262 after compilation is

complete

g. error messages are typed on the Teletype console and

the program halts at loc. 3142,

h., re-initialize the compilef if a further compilation

g-1

Depress STOP

Load
ALGOL-8 Compiler

}__..

Set SR=0400

(::)—————-Depress STOP

High-Speed Reader

Depress LOAD ADD

Turn TTY to LINE

[Devress START

_ ith Binary
Loader - Load
into Field #

Low-Speed Reader

\

Put Source Tape in HSR

Depress HSP To ON

R

Type R

////ﬁﬂfEh\\\\
Reader
\?/

4

Put Source Tape in LSR

TYPE T

\

Denress LSP ON
.
Set LSR To START

Tape

Reads In
?

Diagnostics

Yes

Correct Error

Compiled Tane is Punched

(Remove Compiled Tape

Figure 8-1 Compiling an ALGOL-8

program

Load

Tape

With Binary |

Reinitialize "l Loader - Load

Linto Field g

ALGOL~8 Program

Loader

Load Compilij> ______ with Binary

Load Op. System P Yes see Note
Loader & Functions Below
Set SR=7400
Load ALGOL-8 | ___ __|with Binary
Depress LOAD ADD Operating System Loader

1

Hiah—Speed Low-Speed
eader Whic Reader

Set SR=3400

Deoress Start

_{ Turn TTY To LINE

Put data
in appropriate
reader

No

| Tape Stops

\
Load Function

Output
?

Low-Speed Punch

Loader Overlay Depress HSP Depress LSP ON
OWER To ON
Generate Leader Tapé1 Generate Leader Tape

NOTE: The function loader and functions
must be used whenever an ALGOL-8
program uses the power (%) oper-
ator or any of the standard fun-
ctions, SIN, COS, ARCT, LN, EXP,

[Set SR=0400 |*

Depress LOAD ADD

I Depress ‘START l

and SQRT. l
Output in Result
of ALGOL Program
/\
: Yes
Finished No ’%g—Execut. ,
Progr
?
Figure 8-2 Running an ALGOL-8 Program.

8-3

is required, by loading the second tape with the

Binary Loader,

8.1.2 Memory Usage

The compiler uses all memory locations from @~7577. The
double input buffer is at loc. 4@ and the single output buffer

is at 74¢9.

8.2 Operating System

There are 3 tapes which make up the ALGOL-8 operating system
ALGOL OPERATING SYSTEM DEC-08-~KA3A-FB

ALGOL OPERATING SYSTEM, FUNCTION LOADER DEC-08~KA4A-PB
AND FUNCTIONS

ALGOL FUNCTION LOADER OVERLAY DEC-08-KASA-PB

The system is based on the flecating point package (DEC-8-5-5).

It will run in any memory field, but will not use more than one

field.

The standard functions (sIN, cos, ARCT, LN, EXP, and SQRT)
are loaded only if they are required by the compiled program,
They must be loaded if the program calls them explicitly or if

the exponentiation (4) operator is used,

There are two alternative operating procedures;:

B.2.,1 Operation - No Functions Required

a. Load compiler output with Binary Loader,

b. Load Operating System (KA3A-PB) with Binary Loader.

C. 1Input data must be in the appropriate reader if
required and, if punched output is required, the

appropriate punch must be on.

8-4

d.

e,

TLoad address 400 and start.

The program may be restarted at location 400,

8.2.2 Operation - Functions Required

a.

b.

d.

£.

g

lLoad compiler output with Binary Loader.,

lLoad Operating System, Function Loader and Functions
(KA4A-PB) with Binary Loader.

The Binary Loader loads the operating system and the
Function Loader. The tape will stop before the
functions are loaded.

To ioad the functions, load address 7400, set bit &
for appropriate reader (as in the Binary Loader) and
start.

The necessary functions will be loaded and the reader
will halt at location 7424, (A checksum error will
cause the loader to halt at location 7511 with the
checksum difference in the AC.) The reader will load
only the needed functions and, in general, the reader
will halt with the functionr tape only partly read.
Load the Function Loader Overlay (KAS5A-PB) with the
Binary Loader.

Go to step ¢ of paragraph 8.2.1.

8.2.3 Memory Usage

The Operating System uses locations 0-377 and 4600-7577,

Functions are loaded by page, downwards (towards J) from

location 4600,

The compiled program is loaded from 400 upwards. The pages

between the compiled program and the functions (or location 4600,

if no functions are required) are used for array storage,

8-5

e el a s <

8.3 Paper tape Input Format

Input to the compiler and data input to the operating system
may be in parity or non-parity ASCII format paper tape. Blank
tape, rubout and line-feed characters are ignored., sSpaces are

ignored except in text strings,

8.3.1 Compiler Input

A source program must be terminated by a $, which must be

the first character of a line, followed by a carriage return.

8.3.2 Operating System Input

Input of a data item to the operating system i.e. by a READ
procedure statement is terminated by any character which is not

a number, sign, decimal point or § (indicating the exponent).

APPENDIX A

ALGOL-8 BASIC SYMBOLS

Long Corresponding Short Corresponding
ALGOL-8 ALGOL-8
Basic Symbols Representation Basic Symbols Representation

begin 'BEGIN' + +
end '"END' - -
real 'REAL' X *
integer ' INTEGER' / /
boolean 'BOOLEAN' 4 +
array 'ARRAY' = =
switch 'SWITCH' ¢ ¥

if ‘ 'IF' < <
then 'THEN' > >
else 'ELSE' = < =
for 'FOR' = > =
step 'STEP' . .
until 'UNTIL' ' '
do 'DO’ ; ;
goto 'GOTO! : :
comment ' COMMENT' .= .=
true 'TRUE' Power of 10 $
false "FALSE' ((

APPENDIX A

ALGOL-8 BASIC SYMBOLS

(cont'd)

Long

Basic Symbols

Corresponding
ALGOL-8
Representation

Short

Basic Symbols

Corresponding
ALGOL~8
Representation

h y<>1

'NOT'
'AND’
'OR'

"IMP’

IEQUI

*NOTE

[0 S

L 4

shift K=C

Shift M=]

APPENDIX B

RESTRICTIONS

Limitations of the Language

1.
2,
3.

5.

6.

7.

Thare are no user procedures.

There are no Boolean arrays.

An integer or real array must be one dimensional.

The lower bound must be either the digit @ or the
digit 1.

The upper bound must be a simple integer variable

or an unsigned integér.

The subscript of an array variable or of a switch
designator must be a simple integer variable or an
unsigned integer.

variable identifiers are differentiated by the first
four alphanumeric characters only.

A switch list must be a label list, the labels of which
must be declared in the same block in which the switch
declaration appears, or in an outer block.

The while long basic symbol is not recognized.

Limitations of Program Size and Form

1.

2,
3.

1.

50 identifiers simultaneously valid. Identifiers are
defined as simple variables, subscripted variables,
switch designators and declared labels.

10 arrays (real or integer).

7 nested blockss

18 undeclared labels. Undeclared labels are those labels
whose declaration occurs in the same block after their use,

or in an outer block. Hence, labels of a switch list are

undeclared labels.

N - O

O 0O N9 O U1 oA W

10
11
12
13
14
15
16
17
18

APPENDIX C

TABLE OF ERRORS

Long basic symbol error
Identifier Error
Declaration Error

Multiple Declaration error
Statement error

Statement end error

Colon and equals sign error
Index error

Constant outside range
Simple Boolean expression error
GOTO statement error
Begin-End error

Capacity overflow error
Assignment statement error
Real number error

Read or write error
Arithmetic expression error
pParenthesis number error

Standard function error

APPENDIX D
SUMMARY OF COMMANDS

'BEGIN' Opening statement parenthesis -
used to start a program, compound
statement or block.

'END! Clésing statement parenthesis -~
used to terminate a program,
compound statement or black.

'REAL' A,B,C; Real number variable declaraticn -

used to identify the real number

variables used within a program

or block; in this case A, B and ¢

are real variables,

'INTEGER® I, J, K; Integer variable declaration -
used to identify the integer variables
used within a program or block; in
this case I, J and K are integer
variables,

'BOOLEAN' Bl, B2; Boolean variable declaration -
used to identify the Boolean variables
used within a program or block. In
this case Bl and B2 are Boolean
variables,

'ARRAY' A [1;10] , B (28] 5 array declaration -
used to specify the arrays used

within a program or block, This

'SWITCH' Si1=Ll, S2,STOP;

‘coTo! 1L;

'COMMENT®' TEXT;

symbol should be preceded by

'INTEGER' or 'REAL' to identify

the type of array., In ALGOL-8, the
lower limit must be @ or 1, and the
upper limit must be an unsigned

integer (e.g. 10, above) or a

simple integer variable (e.g. N,

above). Only one-dimensional

arrays are allowed in ALGOL-8,

Switch declaration -

used with 'GoTo' s [1] to branch |
an ALGOL-8 program, based on the

value of an integer index, I. The
index I may bé an expression but its
values must range from 1 upward, In
the example given, the possible

values for I must be 1, 2 and 3,

GOTO statement - |
specifies that the statement to

be executed next is the one identified
by the label L. (L is an identifier
which is separated from the statement
which it precedes by a colon,)

Comment statement - %
provides a means of including

comments in a program to identify

'IF'R 'THEN' S3

'IF' R 'THEN' Sl ‘ELSE' s23

'FOR' V1= Al, A2, A3 'DO' Sl

parts and to clarify procedures.
All characters typed after the
'comngNT' and before the semicolon
are included in the program listing,
They are not typed during the runnihg
of a program,
IF statement -
R is a relation, such as X> v+5;
S is a statement, such as 'GOTO' BIG;
If the relation R is true, the state-
ment S will be executed. If the
relation R is false, S is skipped and
the next statement in sequence is
executed. S may be a compound state-
ment, bracketed by 'BEGIN' and 'END'.
Conditional statement -
if relation R is true, statement Sl
is executed and S2 is skipped; if
R is false sgatement Sl is skipped
and s2 is executed, S1 must not be
a conditional statement; however, S2.
may be conditional, thus establishing
nested conditional statements,

FOR statement -
statement S1 is executed repeatedly
with the controlled variable V1
taking on each of the values of Al,
A2, and A3, For example, S1 could

be a block to compute the sine of an

'FOR'V1:=X1

'STEP' X2

'*UNTIL*X3

*DO*S1;

angle V1, where Al, A2,

and A3 are the desired
values of V1,

Step-until statement -
statement S1 is executed
repeatedly with the control
variable V1 taking on
values of X1 initially, and
increasing to X3 by adding
on the increment X2. For
example, if S1 computes the
sine of an angle, X1
(initial) could be £ degrees,
X2 (increment) could be 10
degrees, X3 (final) could
be 90 degrees.

COM

EXIT:
$

APPENDIX E

NOTES ON ALGOL

PILER

The ALGOL~-8 compiler is analyzed with emphasis on the implementation, performance,
and error diagnosis.

(1) The ALGOL-8 compiler will halt with every syntex error and does not continue to scan
the rest of the source. This is typical of many ALGOL compilers.

(2) After each compilation load the first part of RE~INIT to type out the symbol table and

load the second part of "RE-INIT to reinitialize the compiler. This is only necessary if
the identifier printout is desired.

(3) Error diagnosis performed by the compiler is fairly good with the exception that the
message typed out may sometimes appear vague and as a result becomes unclear, each error
code covers many different messages. This results from the complexity of the programming
language and the ability of the program to be contained in 4K.

The following observations were made during compilation time.

(T) Boolean expressions must be written as specified in section 3.2.1 of the manual

(2) I/O of Boolean identifiers and mixed mode constructions with Boolean mode identifiers
are not allowed.

(3) All "END" statements must be terminated by (;).

(4) The following refers to dummy statements.
‘BEGIN'

'‘BEGIN'
'IF* I = J 'THEN' 'GOTO" EXIT;

'END'
'END'’

The above situation will always cause BAD ‘GOTO' error message, because 'EXIT' is
outside the block where 'GOTO' statement tries to link.

E-1

The correct form is as follows:

'‘BEGIN'
'IF' I=J 'THEN 'GOTO' EXIT;

EXIT:
'END'

(5) With regards to "GOTO" statement by referencing' ALGOL-8 Manual page 5-2,
Section 5.2 GOTO examples have shown different resuylt.

GOTO example 1 O.K.

GOTO example 2 error 10 during compilation

refer to the attached sheet.

OPERATING SYSTEM

(1) DOT (.) is not allowed for integer input. It does not give any error message but simply
treats it as a null data.

(2) WRITE (1, "INPUTV e s 1 U W COSINE"); SKIP; will occasionally print out as:
INPUTCOSINE. The seven spaces between the two words are not printed out.

(3) In the statement 'FOR' V:=1" . . | 'UNTIL' N 'DO! ,
if N has value a of 0 or negative number, all the statements within the range of 'DO' will be
ignored, but no error message will appear.

(4) "VARIABLE ARRAY" program is attached for reference, because the "WRITE"
stafement under the control of "FOR" yields only 1 line result so that most of them will
not be readable. The result is also attached.

ALGOL Functions including both Basic and Standard.

(1) "ENTIER" function test results are attached at the end of this section.

(2) Boolean operator 'AND' does not function properly at all times for example:

T = true
F = false
" T'AND' 1T Correct
T 'AND' F=»T Wrong, should be F
F 'AND' F=T Wrong, should be F

Refer to results of Boole TA & 2A.,

(3) SINE function:
let x = argument
.001 <x<.05

Then error E for all the arguments in the range above is .0000001 < E < .0000]
3/50 yields 5-digit accuracy.
47/50 yields 6~digit accuracy.

(4) COSINE finction:

The range for argument x where .001 <x <.025 almost half have 6-digit accuracy and the
other half have 5-digit accuracy with -.000001 as error,

For other arguments of other ranges, the perctage which guarantees 6-digit accuracy improves
and the error is seldom greater than .000001 .

(5) ARCTAN function:

The range for argument x where .001 <x <.025 few had an error of ~.000001 and
guarantee of 6-digit accuracy is given.

(6) Exponential function:

The range for the argument x where 0 < x < 14 produced excellent results with the
following exceptions: -7

ef9. yields 8103.07 instead of 8103.08 The error is -.01.

eP 1. yields 59873.9 instead of 59874.1 with error 1.2,
eP13 yields 442412. instead of 442413. with error -1.0.
(7) ABS function operates accurately.

(8) Natural log function:

The range of the argument x where 1. <x <1.030. One sixth yield é~digit accuracy,,
whereas most of them yield only 5-digit accuracy and one tenth yield approximately 4-digit
accuracy.

(9) Square Root function:

The range of argument where 1. <x <40. All results have a 6-digit accuracy.

USERS' MANUAL CHANGES

(1) Page 1-2. 'INTEGER' SUM: (colon should be changed to semicolon after sum).

(2) Page 1-8. 'FOR' E 'STEP' | 'UNTIL' F 'D'D's. It would be much better and less
confusing if A semicolon (;) is inserted after S.

(3) Page 3-3. Division (/) is considered as Real Operator. (Integer division is
allowed.) '

(4) Page 4-1. Chapter 4. All declaration statements should be listed before their
explanation, because all declaration statements must appear at the beginning of
a block.

(5) Page 5-2. Section 5.3
Treat 'FOR' V:= A as 2.

(6) Page 5-4. The total number of conditional and FOR statements that can be
accommodated at one time is eighteen.

This particular combination is not tested.

However, its equivalent:
‘IF' . . . 'THEN'. . . . 'ELSE' was tested and it can accommodate at one time 9.

(7) Page 5-5. Section 5.5

B: = A*A*A; is a dummy statement.
(8) Page 5-6. In the example:

K: 1+ J; should be K: = | + J;

(9) Appendix B: At no time can a single ALGOL program contain more than 18 (TEN) different
dimensioned variables.

Ex: A (1:N), B(I:N). ...

E-4

VARIABLE ARRAY

'BEGIN'

'COMMENT' ARRARY STATEMENT TEST;
'INTEGER' N, V;

‘REAL' 'ARRAY' AXpl :NEBX€1:Ng;

WRITE (1. "TEST FOR ARRAY STATEMENT") ;SKIP;
WRITE (1, "TYPE A NUMBER IN, MAX=18") ;SKIP;
READ (1, N) ;SKIP;

'FOR' V:=1 'STEP' 1 'UNTIL' N 'DO"

'BEGIN' :

READ (2, AXCV1) ;SKIP;

BXEVa=1/AXEVE;SKIP;

'END;

'FOR' V:=1 'STEP' 1 'UNTIL' N 'DO"'

WRITE (1,AXgV3 BXgVY) ;SKIP;

'FOR’ V:=1 'STEP' 1 'UNTIL' N 'DO’

WRITE (2, AXgVJ, BXgVY ;SKIP;

'END'

OK:

EXIT:

*L

OK:

EXIT:

GOTO, EXAMPLE 1

'‘BEGIN'

'INTEGER' 1, J;

WRITE (1, "GOTO TEST");SKIP;
READ (1, I..J); SKIP;

'‘BEGIN'

'IF' I=J 'THEN' 'GOTO" OK;
WRITE (1, "NOT TOO GOOD") ;SKIP;
'GOTO" EXIT;

WRITE (1, "O.K."™) ;SKIP;
'END';

WRITE (1, "EXIT") ;SKIP;

‘END’

GOTO, EXAMPLE 2

'BEGIN'
'INTEGER' 1, J;

WRITE (1, "GOTO TEST") ;SKIP;

READ (1, I, J) ;SKIP;

'BEGIN'

'IF' I=J 'THEN' 'GOTO' .OK;
WRITE (1, "NOT TOO GOOD") ;SKIP;
'GOTO' EXIT;

WRITE (1,"O.K.") ;SKIP;

WRITE (1, "EXIT") ;SKIP;
‘END'

E-6

'‘BEGIN'

'REAL' A, B;

'INTEGER' |, J;

WRITE (1, "DUMMY TEST") ;SKIP;SKIP;
READ (1,A,1,J ;SKIP;

WRITE (1, "A,B,1,J ARE NOT DECLARED IN THE NEXT BLOCK") ;SKIP;
WRITE (1, "NEXT IS A NEW BLOCK") ;SKIP; '
'BEGIN'

IF' =2 'THEN' 'GOTO' EXIT;

WRITE (1, "WRITE 5 SKIPS") ;SKIP;SKIP;SKIP;
SKIP;SKIP;

B: =A*A*A;

EXIT:

'END'

‘END'

E-7

EXIT:

‘BEGIN':

‘REAL' A, B;

'INTEGER' I, J;

WRITE (1, "DUMMY TEST") ;SKIP;SKIP;

READ (1,A,1); } _ o
WRITE (1,"A,B, 1, J ARE NOT DECLARED IN THE NEXT BLOCK") ;SKIP;
WRITE (1, "NEXT IS A NEW BLOCK") ;SKIP;

'BEGIN'

"IF' 1=J 'THEN' 'GOTO' EXIT;

WRITE (1, "WRITE 5 SKIPS") ;SKIP;SKIP;SKIP;
SKIP;SKIP;

B: =A*A*A;

'END'

'END'

