

DECUS NO.

8-333

TITLE

8K PAL-D ASSEMBLER FOR 4K DISK MONITOR SYSTEM

AUTHOR

Charles H. Conley

COMPANY

Digital Equipment Corporation Maynard, Massachusetts

DATE

September 8, 1970

SOURCE LANGUAGE

PAL-D

8K PAL-D ASSEMBLER FOR 4K DISK MONITOR SYSTEM

DECUS Program Library Write-up

DECUS No. 8-333

The 8K PAL-D Assembler differs from the 4K PAL-D Assembler as specified in the 1970 Programming Language Manual except as follows:

1) Input may be from any of the following:

*IN - T:

Teletype reader

R:

High-speed reader

S: name

DF-32 disk or DECtape

Sn: name

RF-08 disk

Dn: name

DECtape

2) Binary output may be to:

*OUT-

T: Teletype punch

R:

High-speed punch

S: name

DF-32 disk or DECtape

Sn: name

RF-08 disk

Dn: name

DECtape (On DECtape Systems only)

3) Listing output may be to:

*OPT-

T

Teletype

R

High-speed punch

L

LP-08 Line printer

The 8K PAL-D Assembler has the following pseudo-ops:

DECIMAL

- * EJECT
- * ENPUNCH

EXPUNGE

FIELD

FIXTAB

- * IFDEF
- * IFZERO
- * NOPUNCH

OCTAL

PAGE

PAUSE

TEXT

XLIST

* ZBLOCK

^{*}Pseudo-ops not found in 4K PAL-D but explained in the 1970 Programming Language Manual.

8K PAL-D provides space in the Symbol table for approximately 890 User defined symbols. It may be saved on the system device with the following command: .SAVE PAL8:0-5177, 6600-7577;200

8K PAL-D PROGRAMMING

The 8K PAL-D Assembler is similar to 4K PAL-D. The reader is advised to learn the 4K PAL-D Assembler by studying the appropriate sections of Chapter 13 of the Programming Language Manual, then return to this section to learn the additional features of 8K PAL D. These additional features include assembler directives which permit operation of the Assemble to be controlled by the source program, page control, and the ability to expand to run in 12K of core.

CHARACTER SET

In addition to the characters allowed in 4K PAL-D, the following characters are given a special significance in 8K PAL-D: < >.

The angle brackets (< >) define the bounds of a conditional statement. The user should be especially cautious not to use angle brackets within a comment in any program containing a conditional assembly statement.

PSEUDO-OPERATORS

In addition to the pseudo-operators allowed in 4K PAL-D, the following pseudo-operators are unique to 8K PAL-D:

RESERVING FREE STORAGE

ZBLOCK n

Where n is an integer, ZBLOCK causes the Assembler to reserve n words of memory containing zeros, starting at the word indicated by the current location counter.

CONDITIONAL ASSEMBLY

IFDEF symbol <statements>

If the symbol indicated is previously defined, assemble the statements contained in the angle brackets. If undefined, ignore these statements. Any number of statements can be contained in the angle brackets and may consist of several lines of code. The format of the IFDEF statement requires a single space before and after the symbol.

IFZERO expression <statements>

If the evaluated (arithmetic or logical) expression is equal to zero, assemble the statements contained within the angle brackets; if the expression is non-zero, ignore these statements. Any number of statements can be contained in the angle brackets and may consist of several lines of code. The format of the IFZERO statement requires that the expression not contain any imbedded spaces and must have a single space preceding and following it.

BINARY OUTPUT CONTROL

NOPUNCH

Upon encountering this statement the Assembler continues to assemble the code, but ceases binary output.

ENPUNCH

This statement causes the Assembler to resume (or continue) binary output.

These two pseudo-operators are put into the source program and are ignored until pass 2 at which time they direct the Assembler to delete some section of code from the final binary punched tape.

For example, these pseudo-operators could be used where several programs have the same contents on page zero. When these programs are to be loaded and executed together, only one page zero need be punched.

PAGINATION OF OUTPUT LISTINGS

EJECT

The EJECT command causes the listing to jump to the top of the next page. The 8K PAL-D Assembler counts output lines and will format the user's program into neat, even pages with a page eject every 55 lines. If the user requires more frequent paging, he should use the EJECT pseudo-operator. A FORM FEED character within the source program will also cause a page eject.

The pagination process within the 8K PAL-D Assembler causes an output of carriage return/line feed pairs for the 33 ASR Teletype. For users with the 35 ASR Teletype who desire to output a FORM FEED character directly, changes should be made to modify the FORMI subroutine found in the 8K PAL-D listing.

LOADING AND OPERATING PROCEDURES

Saving 8K PAL-D

The 8K PAL-D Assembler is supplied on binary coded paper tape. It is loaded using the Binary Loader as explained in Appendix C2.

The 8K PAL-D Assembler may be saved on the system device as a system program. This is done by typing the following SAVE instruction:

.SAVE PAL8: Ø-5177,66ØØ-7577;2ØØ

The Assembler is now saved as a system program. The programmer may now type PAL8, which brings the assembler into core for use with symbolic source programs.

Output devices are the same for 8K PAL-D as for 4K PAL-D. When 8K PAL-D requests the input file(s), the user may select up to ten (10) input files. Valid input devices for 8K PAL-D are as follows:

Device Designator

Device

T:

Teletype

R:

High-speed reader/punch

S: name

DF 32 disk RF 08 disk

Sn: name
DO: name through D7: name

DECtape

Symbol Table

The symbol table for 8K PAL-D provides space for approximately 890 (decimal) user defined symbols. When the SE (symbol table exceeded) error message occurs, assembly is terminated and control is returned to the Monitor. The user file .SYM is not used by 8K PAL-D.

12K VERSION OF 8K PAL-D

The 8K PAL-D Assembler must be reassembled to run in 12K of core. The 12K version has a larger symbol table, but assembles at a slower pace. The changes to be made are documented on page 1 of the 8K PAL-D listing.

ADDENDUM TO DECUS NO. 8-333

HARVARD UNIVERSITY

DEPARTMENT OF PHYSICS

LYMAN LABORATORY OF PHYSICS

CAMBRIDGE, MASSACHUSETTS 02138

September 18, 1974

Ms. Mary Hogan Digital Equipment Corp. Users Society Maynard, Massachusetts 01754

Dear Ms. Hogan:

We have run across a problem with 8K PAL-D (DECUS 8-333) on our PDP 8/E. You will perhaps want to include this note in the file for that program.

When the 8K PAL-D assembler is used with paper tape input from the PCO4 high speed reader which strobes data by the feed hole signal, timing problems can occur which depend on the program being assembled. The problem is that while the reader "stop delay" one-shot (for single character reading rate) can hold off the reader flag for as long as 60 msec., 8K PAL-D waits only 36 msec. (on the PDP 8/E) before deciding that the tape has run out. For slower computers than the 8/E, this time will be longer and the problem may not occur.

The following patch will increase the loop time from 36 msec. to 82 msec.:

in location	4173	deposit	1173
**	1173	11	1400
11	1174	**	1400
IF	1175	II	7200
11	1176	II	5777
II .	1177	11	4141

Assembly time is not noticably increased by the change, since the reader flag can terminate the loop at any time. The change is completely compatible with standard (i.e. stepping motor) PCO4 readers.

Thank you,

Larry A. Cohen

Jany alih

Research Assistant

MAY 29 1975

Los Angeles Office

21120 Vanowen Street Post Office Box 633 Canoga Park, CA 91305 Telephone (213) 347-8360

Bolt Beranek and Newman Inc.

Consulting Development Research

20 May 1975

Ms. Ferne Halley Digital Equipment Corporation 146 Main Street Maynard, Massachusetts 01754

Subject: Problem with PDP-8 8K PAL-D Assembler

(DECUS No. 8-333)

Reference: BBN Letter of 22 January 1975 (Attachment 1)

Dear Ms. Halley:

I would like to take this opportunity to thank you for sending us the source listing for the 8K PAL-D Assembler and for guiding our attention to specific parts of the code. After some review of the code, I believe we have found the cause of the problem regarding paper tape input files described in our 22 January letter.

I. STATEMENT OF THE PROBLEM

The problem is briefly defined as follows: Upon reaching the end of a paper tape input file, and after reading to the physical end of the tape, the assembler attempts to reprocess a portion of the last input buffer's worth of code. It thinks this code should be appended to the end of the file (often resulting in page overflow, double defined symbols, etc.

II. CAUSE OF THE PROBLEM

The cause of the problem centers around the buffered input scheme used for paper tape files. The assembler reads 128 (200₈) characters, stores them in a one page buffer, and sets up a working pointer (PTBUFP) and counter (CHRCNT) for retrieval of characters from the buffer. It then processes one "buffer's worth" of code, after which another 128 characters are read into the buffer and the process continues until the physical end of the tape is detected. Upon reaching the end of the tape, however, only part of the input buffer will be filled (since it is very unlikely that the last character on the paper tape corresponds exactly to the 128th character entered into the buffer). In this case

Bolt Beranek and Newman Inc.
Ms. Ferne Halley
20 May 1975
Page 2

the working counter (CHRCNT) should be set to account for only a partial filling of the buffer. The problem is that CHRCNT is always set to indicate 128 characters are in the buffer, even under the end-of-tape condition.

III. FIX FOR THE PROBLEM

Attachment 2 shows a relatively straightforward fix for the problem. Unfortunately this fix requires reassembly of the 8K PAL-D code.

IV. PATCH FOR THE PROBLEM

For users with a current binary tape of 8K PAL-D, the four-instruction patch shown in Attachment 3 will accomplish the same result as the fix shown in Attachment 2. The patch is as follows:

LOCATION	OLD CONTENTS	NEW CONTENTS
4172	5357	7610
4174	N/A	1052
4175	N/A	7040
4176	N/A	5360
* * *	* * * * * * * * * * * * * * * * * * * *	

We have used the patch outlined in section IV above and it has worked quite satisfactorily.

It might be well for a member of the DEC staff to review both the fix and the patch in case there may be some undesirable ramifications.

Very truly yours,

BOLT BERANEK AND NEWMAN INC.

R. D. Horonjeff

Enclosures

RDH:d1w

Los Angeles Office

21120 Vanowen Street Post Office Box 633 Canoga Park, CA 91305 Telephone (213) 347-8360

Bolt Beranek and Newman Inc.

Architectural and Engineering Acoustics

22 January 1975

Ms. Ferne Halley Digital Equipment Corporation 146 Main Street Maynard, Massachusetts 01754

Subject: Problem with PDP-8 8K PAL-D Assembler (DECUS No. 8-333)

Dear Ms. Halley:

In following up our telephone conversation today, I am outlining herein the problem we have been experiencing with the above referenced assembler.

I. BBN-LA PDP-8 Equipment Configuration

PDP-8 w/8K memory (4K core, 4K Calcomp/Galaxies semi-conductor)
DF-32 Disk w/32K storage
High Speed Paper Tape Reader/Punch
Teletype
miscellaneous non-DEC peripherals

II. Statement of the Problem

The problem is briefly defined as follows:

Upon reaching the end of a <u>paper tape</u> input file, and after reading to the physical end of the tape, the assembler attempts to reprocess a portion of the last input buffer's worth of code. It thinks this code should be appended to the end of the file (often resulting in page overflows, double defined symbols, etc.). An example is discussed in Section III below.

Ms. Ferne Halley 22 January 1975 Page 2

The problem occurs consistently with all paper tape files (unless the file is the last one containing the end-of-program (\$) symbol). The same code read from a file on disk will be processed correctly. The problem occurs on all passes of the assembly.

The 4K PAL-D assembler will process paper tape files correctly (however, an early version of 4K PAL-D did have problems of a slightly different nature with paper tape input).

III. Example of the Problem

A short piece of code was used to exemplify the problem. The example consists of two input files. On paper tape they are two tapes. On disk they are ASCII files S:Al and S:A2. A listing (using the disk editor) is shown in Attachment 1.

Attachment 2 shows the third pass listing from 8K PAL-D using the ASCII files on disk as source input. Note that the assembly proceeds correctly in this case.

Attachment 3 shows the third pass listing from 8K PAL-D using paper tape in the high-speed reader as source input. Note that after the last code on the first file (DUMMY2, 0) has been assembled, the assembler attempts to reprocess code which is already in its input buffer area.

I am enclosing two paper tapes containing the aforementioned ASCII files.

I hope the information I have included will aid you in locating the source of the problem. If I may be of any assistance please do not hesitate to write or call. Thank you for your consideration in this matter.

Very truly yours,

BOLT BERANEK AND NEWMAN INC.

Richard D. Horonjeff

RDH: ms

ATTACHMENT 2 "THE FIX"

PAL8-V9C 01/29/75 PAGE 46

```
04104
              PUTWD,
        0000
                       2
04105
        7006
                       RTL
24106
        7006
                       RTL
04107
        3332
                       DCA PTRIN
04110
       1332
                       TAD PTRIN
04111
       0147
                       AND P7400
04112
       1720
                       TAD I OBUFP
04113
       3720
                       DCA I OBUFP
04114
       5704
                       JMP I PUTWD
04115
       1324
              FILLED, TAD P10
04116
       4462
                       JMS I ERR1
04117
       5403
                       JMP I MONITOR
04120
       6377
              OBUFP,
                       OUTBUF-1
04121
       1742
              PAUSEP, WAITT+1
04122
       4400
              FNBLOK, FINDBL
04123
       4462
              SAMIOP, SAMIO
04124
       0010
              P10,
                       10
04125
       0000
              ENDONT,
04126
       0000
              DEND,
                       0
04127
       6600
              P6600.
                       6600
04130
       7775
              THIRDW,
                       7775
04131
       7600
              OUTCNT, 7600
04132
       0000
              PTRIN.
                       0
                                         /READ A CHARACTER FROM HIGH SPEED PAPER TA
04133
       2052
                       ISZ CHRCNT
                                         /HOW DOES THE BUFFER LOOK
04134
       5365
                       JMP PTPKUP
                                         /NOT EMPTY, GET CHARACTER
04135
                                         /IS EMPTY, REINITIALIZE THE COUNTER
       1151
                       TAD P7600
04136
       3052
                       DCA CHRONT
04137
       1327
                       TAD P6600
04140
       3053
                       DCA PTBUFP
                                         /REINITIALIZE THE POINTER
04141
       6011
              PTREAD, RSF
04142
       5346
                       JMP .+4
04143
       3200
                       DCA PACK
04144
       6016
                       RFC RRB
04145
       5351
                       JMP .+4
04146
       2200
                       ISZ PACK
04147
       5773
                       JMP I MORTIM
04150
       5370
                       JMP PTEMTY
04151
       7450
                       SNA
04152
       5341
                       JMP PTREAD
04153
       3453
                       DCA I PTBUFP
04154
                       ISZ PTBUFP
       2053
                                               TAD CHRONT
04155
       2052
                       ISZ CHRCNT
                                               CMA
04156
      .5341
                       JMP PTREAD
04157
       7240
              PTINIT, CLA - CMA-
04160
                       TAD P7600
       1151
04161
       3052
                       DCA CHRCNT
                                         /REINITIALIZE THE CHARACTER COUNTER
24162
       1327
                       TAD P6600
04163
       3053
                       DCA PTBUFP
                                         /REINITIALIZE THE BUFFER POINTER
04164
       5333
                       JMP PTRIN+1
04165
       1453
              PTPKUP, TAD I PTBUFP
                                         /PICK UP A CHARACTER
04166
       2053
                       ISZ PTBUFP
```

ATTACHMENT 3 "THE PATCH"

PAL8-V9C 01/29/75 PAGE 46

```
4104
        0000
               PUTWD,
 04105
        7006
                        RTL
 04106
        7006
                        RTL
 04107
        3332
                        DCA PTRIN
 04110
        1332
                        TAD PTRIN
 04111
        0147
                        AND P7400
 04112
        1720
                        TAD I OBUFP
 04113
        3720
                        DCA I OBUFP
 04114
        5704
                       JMP I PUTWD
 04115
        1324
               FILLED, TAD P10
04116
        4462
                       JMS I ERR1
04117
        5403
                       JMP I MONITOR
04120
        6377
              OBUFP,
                       OUTBUF-1
04121
        1742
              PAUSEP, WAITT+1
04122
        4400
              FNBLOK, FINDBL
04123
        4462
              SAMIOP, SAMIO
04124
        0010
              P10.
                       10
04125
              ENDONT,
        0000
                       Ø
Ø4126
        0000
              DEND,
04127
        6600
              P6600.
                       6600
04130
        7775
              THIRDW, 7775
04131
        7600
              OUTCNT, 7600
04132
        0000
              PTRIN,
                       0
                                        /READ A CHARACTER FROM HIGH SPEED PAPER TAP
4133
       2052
                       ISZ CHRCNT
                                        /HOW DOES THE BUFFER LOOK
4134
        5365
                       JMP PTPKUP
                                        /NOT EMPTY, GET CHARACTER
04135
        1151
                       TAD P7600
                                        /IS EMPTY, REINITIALIZE THE COUNTER
04136
       3052
                       DCA CHRONT
04137
       1327
                       TAD P6600
24140
       3053
                       DCA PTBUFP
                                        /REINITIALIZE THE POINTER
04141
       6011
              PTREAD, RSF
24142
       5346
                       JMP .+4
04143
       3200
                       DCA PACK
04144
       6016
                       RFC RRB
04145
       5351
                       JMP .+4
04146
      2200
                       ISZ PACK
04147
       5773
                       JMP I MORTIM
24150
       5370
                       JMP PTEMTY
04151
       7450
                       SNA
04152
       5341
                       JMP PTREAD
04153
       3453
                      DCA I PTBUFP
04154
       2053
                       ISZ PTBUFP
04155
       2052
                       ISZ CHRCNT
04156
       5341
                       JMP PTREAD
04157
       7240
              PTINIT, CLA CMA -
04160
       1151
                       TAD P7600
04161
       3052
                      DCA CHRCNT
                                        PREINITIALIZE THE CHARACTER COUNTER
24162
       1327
                      TAD P6600
24163
       3053
                      DCA PTBUFP
                                        PREINITIALIZE THE BUFFER POINTER
24164
       5333
                       JMP PTRIN+1
04165
             PTPKUP, TAD I PTBUFP
       1453
                                        /PICK UP A CHARACTER
24166
       2053
                      ISZ PTBUFP
```

04171	2325 PTEMTY 5721	JMP I PAUSEP JMP PTINIT SKP CLÀ
•	7040	TAD CHRONT CMA
4176	5360	JMP PTINIT+1