

DECUS NO.

8-47

TITLE

ALBIN, A PDP-8 LOADER FOR RELOCATABLE BINARY PROGRAMS

AUTHOR

J. L. Visschers, P. U. ten Kate and M. A. A. Sonnemans

COMPANY

Instituut Voar Kernphysisch Onderzoek (IKO) Amsterdam, The Netherlands

DATE

1966

SOURCE LANGUAGE

ATTENTION

This is a USER program. Other than requiring that it conform to submittal and review standards, no quality control has been imposed upon this program by DECUS.

The DECUS Program Library is a clearing house only; it does not generate or test programs. No warranty, express or implied, is made by the contributor, Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the program or related material, and no responsibility is assumed by these parties in connection therewith.

ALBIN, A PDP-8 LOADER FOR RELOCATABLE BINARY PROGRAMS

DECUS Program Writeup

DECUS No. 8-47

Abstract

As part of the current design of a PDP-8 real-time monitoring system, a simple method has been obtained to construct relocatable binary formatted programs, using the PAL III Assembler. Allocation of these programs can be varied in units of one memory page (12810 registers). While loading an ALBIN program the actual absolute addresses of indicated program elements (e.g. the keypoints of subroutines) are noted down in fixed program-specified locations on page 0. In order to make a DEC symbolic program suitable for translation into its relocatable binary equivalent, minor changes are required; which, however, do not influence the length of the program. Due to its similarity to the standard DEC Binary Loader, the ALBIN loader is also able to read-in normal DEC binary tapes. The loader is presented here in its simplest form, although the loading method, in a slightly advanced manner, will be used for automatic "piling while loading" of arbitrary sequences of more or less independent programs. In the form to be described, ALBIN requires 12210 locations, including the RIM loader. Piling up in core memory of ALBIN programs stored on conventional or DECtape can be achieved using the same method with minor modifications.

Introduction

When a selected set of programs have to be executed in one run, this normally means full assembling of the set stacked together in the desired combination although a binary equivalent of each program is present. This inconvenience becomes a serious limitation in our application, the design of a parallel multiprocessing system. We, therefore, constructed a loading method which enables the loading of an arbitrary sequence of binary program tapes.

This implies that a binary program tape has to be loaded from a relocatable starting address. The problem with relocation is that the binary form of some program elements depends on the starting address of the program. If we, however, restrict ourselves to relocations in units of one memory page, and if we assume that the page 0 parts of relocatable programs are not to be relocated, the only changeable binary program elements are absolute (12 bits) addresses, referring to a relocatable program point.

Description of ALBIN - Format

For a binary loader, it is rather difficult to differentiate between 12-bit addresses and instructions unless the loader receives additional information from the assembler.

A DEC binary format tape consists of origin settings and memory words. A relocatable binary tape should not contain any origin setting, since this information changes with every loading. Instead, one may insert the origin information via the switch

register. In doing so, the origin setting symbol can be used for "key setting," which then implies that "ADRES" means: set the address of the next instruction in ADRES.

In this way we can handle the absolute (12 bit) addresses. If the register REG should contain an absolute address referring to a relocatable program point AA, we place just above AA the expression "**REG!". While loading, the ALBIN loader then places the right value of AA in REG, for example:

REG, AA AA, ** REG

The condition must be fulfilled that REG is an address in the same relocatable program as *REG, or that REG is fixed (c.q. page 0) address. Therefore, it is impossible to have references between independently relocatable programs over a key address which belongs to one of them. References between independently relocatable programs, therefore, should occur over fixed key addresses at page 0.

Applications

One of the essential advantages of a relocatable loading system is the possibility of automatic piling of programs. In that case the above mentioned switch register setting is replaced by a register in the loader itself which, after each loading, points to the next free page.

Applying a "chaining" principle, one can also load and "remove" less frequently used routines while running (segmenting). This is particularly useful if magnetic tape input is available.

This work is preparatory for a software project performed under the direction of R. van Dantzig.

Directions of Use

Add to the permanent symbol table of PAL III the symbols:

INPUT = 7545 ALBIN = 0

2. The program to be loaded must exist of one or more blocks separated by leader trailer.

A block can be either a BIN or an ALBIN block. At the beginning of each block, the loader is automatically set into BIN mode. It can be brought into ALBIN mode by:

*INPUT ALBIN The loader remains in ALBIN mode until the next block end (\$).

3. The expression *ADRES means in BIN mode: set ADRES in the location counter (origin setting) but in ALBIN mode: set the contents of the location counter in ADRES ("key-setting")

(The location counter contains the address where the next instruction will be placed.)

Due to the fact that the PAL III Assembler does not differentiate between BIN and ALBIN mode, the expression *ADRES in an ALBIN block always has to be followed by a restoring expression, which restores the location counter of the assembler, for example:

AA, **ADRES **AA + 1

The loader interprets this as a "key-setting" in AA + 1 but this is irrelevant since AA + 1 is filled with the next program instruction.

4. Each ALBIN mode block is translated beginning with an address at page 1. This means that the first restoring expression has to be: .200 + x, x is the relative page address where the program has to be placed. This expression must occur before the first instruction of the block. It may, however, be preceded by one or more "key-settings":

*INPUT ALBIN *SUBI *200

SUB, 0

This program can be loaded from the beginning of each page and its actual place then has been noted down in the (page 0) address SUBI.

5. Reading a binary tape, the ALBIN loader will halt at the beginning of each ALBIN mode block. The actual starting address of the block then has to be set via the switch register. Loading will follow by pressing the continue button.

The starting address must agree with paragraph 4 which implies that the least significant 7 bits of the switch register must contain x. In most cases, x can be 0. The blocks then always start at the beginning of a memory page.

6. Sample conversion of a symbolic BIN mode program block in ALBIN mode.

/BIN		/ALBI	IN	
,KEY	•	"INPU		
ŠUBI	, SUBII	ALBIN		
	, SUBI2	"SUBI		
00112	, 50 122			
חדות	1	_* 2ØØ		
*BEG				
SUBI1, Ø		SUBI1,	, Ø	
			out our	
	JMP I SUBII	BB, J	MP I SUBII	
		"SUB2		
		*BB+1		
SUBIZ	o di	ŠUBII,	ø	
DO DI	·, ·	O DII,	, v	
	TAD I AAI		TAD I AAI	
	no en			
AAI,	AA	AAI,	Ø	
				Page Transition
	m ==	CC,		
		$_{f *}$ AAI		
		*CC+1		
AA,	NUMBER	¯CC+1 ÄA,	NUMBER	
,		,		
\$		\$		
₽		₽		

```
*7488
             BEGRIM, KCC
                                             /RIM-LOADER
      6932
 7499
                       JMS READIN
 7481 4216
7482 7186
                       CLL RTL
 7483 7886
                       RTL
 7434 7518
                       SPA
 7485 5281
                       JMP BEGRIM+1
                       RTL
 7436
      7886
                       KSF
 7407 6031
                      JMP .-1
. 7418 5297
                       KRS
 7411 6934
                       SNL
      742
 7412
                       DCA I KOBUS
 7413 3753
 7414 3353
7415 5600
                       DCA KOBUS
                       JMP I BEGRIM
                                             /READ-ROUTINE
 7416 9959 READIN, 9
 7417 6931
7429 5217
                       KSF
                       JMP .-1
                       KRB
 7421 6936
 7422 3346
7423 1346
7424 5616
                       DCA CHAR
                       TAD CHAR
                       JMP I READIN
                       CLA CMA
                                             /(AL)BIN-LOADER
 7425 7245 BEGN,
 7427 7426 3344
7427 3345
7434 3352
                                             /SET BIN-MODE
                       BCA INDIC
                       DCA CHKSM
                        DCA FIRST
                        JMS BEGG
 7431 432
                        JMP .-1
 7432 5231
 7433 1346 GO,
                        TAD CHAR
                        DCA CKT
 7434 3347
                        TAD CHAR
 7435 1346
                       CLL RTL
       7106
7006
 7436
                        RTL
  7437
                        RTL
  7449 7996
 7441 3358
7442 4216
7443 1359
                        DCA WORD
                        JMS READIN
                        TAD WORD
                        DCA WORD
  7444 335#
7445 743#
                        SZL
                        CLA CMA
  7446 7249
  7447 3351
745# 1346
7451 1347
                       DCA MEM
                        TAB CHAR
                        TAB CKT
  7452 3347
7453 4325
                        DCA CKT
                        JMS BEGG
 7454 5357
7455 2351
                       JMP BEND
                        ISZ MEM
                        JMP STORE
  7456 5382
7457 1344
                        TAD INDIC
                        SZA CLA
      7649
  7469
                        JMP B1
  7461 5326
                        TAD FIRST
        1352
7658
  7462 1352
                        SNA CLA
  7463
                        JMP B2
  7464
                        TAD WORD
  7465 1350 B4.
```

```
1273
                      TAD M250
7466
7467
      7510
                      SPA
7478
      5273
                      JMP B3
                      TAD KOBUS
7471
      1353
7472
      3356
                      DCA WORD
                      M239.7633
                                          /CLA
7473
      7699
             B3.
                      TAD CRIGIN
7474
     1354
7475
      3750
                      DCA I WORD
             CHEX,
                      TAD CKT
7476
      1347
7477
     1345
                      TAD CHKSM
                      DCA CHKSM
7566
     3345
                      JMP GO
7531
      5233
     1350
             STORE,
75 22
                     TAD WORD
75 $3
     3754
                      DCA I ORIGIN
                      ISZ ORIGIN
7524
     2354
75@5
     5276
                      JMP CHEX
            В1,
                      TAD WORD
7566
     1350
75 8 7
                      DCA ORIGIN
     3354
7512
     5276
                     JMP CHEX
7511
            B2,
                     ISZ FIRST
      2352
7512
     7492
                     HLT
                     CLA OSR
7513
      7634
                     DCA KOBUS
7514
     3353
7515
     1353
                     TAD KOBUS
7516
     3354
                     DCA ORIGIN
                     JMP B4
7517
     5265
             BEGG.
7524
     6290
                     DCA SWITCH
7521
      3355
7522
     4216
                     JMS READIN
7523
                     TAD M377
     1356
7524
     7644
                     SZA CLA
                     JMP .+4
7525
     5331
7526
     2355
                     ISZ SWITCH
7527
     7240
                     CLA CMA
7538
      5321
                     JMP BEGG+1
      1355
7531
                     TAD SWITCH
7532
                     SZA CLA
     7643
7533
      5322
                     JMP BEGG+2
     1346
7534
                     TAD CHAR
7535
                     AND MASK
     2341
7536
                     TAD M200
     1273
7537
     7450
                     SNA
                     JMP I BEGG
7540
      5723
7541
     7700
            MASK,
                     SMA CLA
7542
                     JMP BEGG+2
      5322
                     ISZ BEGG
7543
      2320
7544
            INDIC,
      1033
                     0
7545
      2646
            CHKSM.
7546
             CHAR.
                     ŝ
      0000
            CKT,
7547
      3320
                     é
7550
      3433
            WORD.
```

```
MEM, FIRST, G
KOBUS, G
ORIGIN, S
SWITCH, M377, -3
BEND, TA
7551
7552
7553
7554
7555
7556
                                  -377
          7481
                                  TAD WORD
7557
          1359
                                  CMA IAC
7565
          7841
7561
7562
          1345
                                  TAD CHKSM
                                  HLT
          7482
                                  JMP BEGN
7563
         5225
```

BEGG	752
BEGN	7425
BEGRIM	7480
BEND	7557
BI	7586
B2	7511
B3	7473
B4	7465
_	7546
CHAR	
CHEX	7476
CHKSM	7545
CKT	7547
FIRST	7552
GO	7433
INDIC	7544
KOBUS	7553
MASK	7541
MEM	7551
M2 0 0	7473
M377	7556
ORIGIN	7554
READIN	7416
	7562
STORE	
SWITCH	7555
WORD	755

