DECUWUS NO.

TITLE

AUTHOR

COMPANY

DATE

SOURCE LANGUAGE

ATTENTION

DECUS

PROGRAM LIBRARY

8-47

. ALBIN, A PDP-8 LOADER FOR RELOCATABLE
BINARY PROGRAMS

J. L. Visschers, P. U. ten Kate and
M. A. A. Sonnemans

Instituut Voar Kernphysisch Onderzoek (IKO)
Amsterdam, The Netherlands

1966

This is a USER program. Other than requiring that it conform to submittal and review standards,
no quality control has been imposed upon this program by DECUS.

The DECUS Program Library is a clearing house only; it does not generate or test programs. No
warranty, express or implied, is made by the contributor, Digital Equipment Computer Users
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or
related material, and no responsibility is assumed by these parties in connection therewith.

_—

ALBIN, A PDP-8 LOADER FOR RELOCATABLE BINARY PROGRAMS

DECUS Program Writeup . DECUS No. 8-47

Abstract

As part of the current design of a PDP-8 real-time monitoring system, a simple
method has been obtained to construct relocatable binary formatted programs,

using the PAL IIl Assembler. Allocation of these programs can be varied in units

of one memory page (128;, registers). While loading an ALBIN program the actual
absolute addresses of indicated program elements (e.g. the keypoints of subroutines)
are noted down in fixed program-specified locations on page 0. In order to make a
DEC symbolic program suitable for translation into its relocatable binary equivalent,
minor changes are required; which, however, do not influence the length of the pro-
gram. Due to its similarity to the standard DEC Binary Loader, the ALBIN loader
is also able to read-in normal DEC binary tapes. The loader is presented here in
its simplest form, although the loading method, in a slightly advanced manner, will
be used for automatic '""piling while loading" of arbitrary sequences of more or less
independent programs. In the form to be described, ALBIN requires 12244 locations,
including the RIM loader. Piling up in core memory of ALBIN programs stored on
conventional or DECtape can be achieved using the same method with minor modifi-
cations,

Introduction

When a selected set of programs have to be executed in one run, this normally means
full assembling of the set stacked together in the desired combination although a binary
equivalent of each program is present. This inconvenience becomes a serious limi-
tation in our application, the design of a parallel multiprocessing system. We, there-
fore, constructed a loading method which enables the loading of an arbitrary sequence

of binary program tapes.

This implies that a binary program tape has to be loaded from a relocatable starting
address. The problem with relocation is that the binary form of some program ele-
ments depends on the starting address of the program. If we, however, restrict our-
selves to relocations in units of one memory page, and if we assume that the page 0
parts of relocatable programs are not to be relocated, the only changeable binary
program elements are absolute (12 bits) addresses, referring to a relocatable program

point.

Description of ALBIN - Format

For a binary loader, it is rather difficult to differentiate between 12-bit addresses and
instructions unless the loader receives additional information from the assembler.

A DEC binary format tape consists of origin settings and memory words. A relo-
catable binary tape should not contain any origin setting, since this information changes

with every loading. Instead, one may insert the origin information via the switch

1.

register. In doing so, the origin setting symbol can be used for '""key setting, "
which then implies that " ADRES" means: set the address of the next instruction
in ADRES,

In this way we can handle the absolute (12 bit) addresses. If the register REG
should contain an absolute address referring to a relocatable program point AA,
we place just above AA the expression " REG!. While loading, the ALBIN loader
then places the right value of AA in REG, for example:

REG, AA . REG

bAd

AA,

The condition must be fulfilled that REG is an address in the same relocatable pro-
gram as ,REG, or that REG is fixed (c. q. page 0) address. Therefore, it is im-
possible to have references between independently relocatable programs over a key
address which belongs to one of them. References between independently relocatable
programs, therefore, should occur over fixed key addresses at page 0.

Applications

One of the essential advantages of a relocatable loading system is the possibility of
automatic piling of programs. In that case the above mentioned switch register set-
ting is replaced by a register in the loader itself which, after each loading, points
to the next free page.

Applying a ''chaining'' principle, one can also load and '"remove" less frequently
used routines while running (segmenting). This is particularly useful if magnetic

tape input is available.

This work is preparatory for a software project performed under the direction of
R. van Dantzig.

Directions of Use

1. Add to the permanent symbol table of PAL III the symbols:

7545
0

INPUT
ALBIN

2. The program to be loaded must exist of one or more blocks separated by leader
trailer.

A block can be either a BIN or an ALBIN block. At the beginning of each block,
the loader is automatically set into BIN mode. It can be brought into ALBIN
mode by:

LANPUT
ALBIN

The loader remains in ALBIN mode until the next block end ($).

The expression ,ADRES means in BIN mode: set ADRES in the location
counter (origin setting) but in ALBIN mode: set the contents of the location
counter in ADRES (''key-setting'')

(The location counter contains the address where the next instruction will be

placed.)

Due to the fact that the PAL III Assembler does not differentiate between BIN
and ALBIN mode, the expression zADRES in an ALBIN block always has to be
followed by a restoring expression, which restores the location counter of the

assembler, for example:

AA,
«ADRES
AA + 1

The loader interprets this as a '""key-setting' in AA + 1 but this is irrelevant
since AA + 1 is filled with the next program instruction.

Each ALBIN mode block is translated beginning with an address at page 1. This
means that the first restoring expression has to be: .200 + x, x is the relative
page address where the program has to be placed. This expression must occur
before the first instruction of the block. It may, however, be preceded by one or
more ''key-settings'":

«INPUT
ALBIN
«SUBI
%200

SUB, 0

This program can be loaded from the beginning of each page and its actual place
then has been noted down in the (page 0) address SUBIL.

Reading a binary tape, the ALBIN loader will halt at the beginning of each ALBIN
mode block. The actual starting address of the block then has to be set via the
switch register. Loading will follow by pressing the continue button.

The starting address must agree with paragraph 4 which implies that the least
significant 7 bits of the switch register must contain x. In most cases, x can
be 0. The blocks then always start at the beginning of a memory page.

3.

Sample conversion of a symbolic BIN mode program block in ALBIN mode.

/ BIN
LKEY

SUBI, SUBI1
SUB2, SUBI2

«BEG
SUBIL, ¢

JMP I SUBI1

SUBIZ, ¢

TAD I AAI

AAI, AA

/ ALBIN
LNPUT
ALBIN
«SUBI
208

SUBIL, §

BB, JMP 1 SUBIIL

40U B2
BB+1

%

SUBIL, ¢

TAD I AAI

AA, NUMBER

CC, --

*
CC+1

, NUMBER

Page Transition

1400
7481
7482

. T483

1434
7485
7436
1487

- 7418

7411

- 7412

1413
7414
7415
1416
74117
7428
1421
1422
7423
7424
7425
1426
74217
1438
7431
1432
7433
1434
7435
1436
7437
7449
7441
7442
1443
1444
1445
1446
7447
7458
7451
7452
1453
1454
7455
1456
7457
1460
1461
7462
7463
1464
1465

1346

*T488

6832 BEGRIN,
4216 '

7186
7986
7518
5281
7806
6831
5287
6834
7428
3753
3353
5688
'TTT]
6831
5217
6936
3346
1346
5616
1248
3344
3345
3352
4328
5231

REABIN,

BEGN,

GO,
3347
1346
7186
1886
1886
3350
4216
1350
3358
7430
1240
3351
1346
1347
3347
4328
5357
2351
5382
1344
7648
5386
1352
7658
5311

1358 B4,

KCC
JMS
CLL
RTL
SPA
JHP
RTL
KSF
JMP
KRS
SNL
DCA
BCA
JMP

KSF
JMP
KRB
BCA
TAD
JMP
CLA
BCA
BCA
DCA
JMS
JMP
TAB
BCA
TAD
CLL
RTL
RTL
DCA
JMS
TAD
DCA
SZL
CLA
BCA
TAD
TAB
DCA
JMS
JMP
15Z
JMP
TAD
SZA
JMP
TAD
SNA
JMP
TAD

REABIN
RTL

BEGRIM+1
-_1

I XOBUS
KOBUS
1 BEGRINM

0-1

CHAR
CHAR .
1 REABIN
CMA
INDIC
CHKSHM
FIRST
BEGG
!
CHAR
CKT
CHAR
RTL

WORD
READIN
WORD
WORD

CMA
MEM
CHAR
CKT
CKT
BEGG
BENE
MEM
STORE
INDIC
CLA
Bl
FIRST
CLA
B2
WORD

/RIM-LOABER

/READ-ROUTINE

/(AL) BIN-LOADER
/SET BIN-MOBE

7466
7467
1474
7471
1472
7473
7474
7475
7476
7477
1506
7581
1542
7583
1584
7585
7586
587
51
7511
7512
13
7514
7515
516
15117
1524
7521
1522
1523
1524
7525
7526
75217
7538
7531
1532
7533
1534
7535
17536
537
1546
1541
7542
1543
7544
1545
7546
7547
1554

1273
151¢
5273
1353
335¢
71656
1354
3758
1347
1345
3345
5233
135¢
3754
2354
5276
1356
3354
52176
2352
T402
76384
3353
1353
3554
5265
Lédd
3355
4216
1356
1644
5331
2355
124¢
5321
1355
1848
5322
1346
2341
1273
745¢
5723
TT0w
5322
232w
Jodd
LGB
PR
4ol
Sdidi

CHEX,

STORE,

BEGG,

MASK,

INDIC,
CHKSli,
CHAR,
CKT,
WORD,

TAD M2ua
SPA

JMP B3

TAD KOBUS
DCA WORD
M23G, 7688
TAD CRIGIN
DCA I WORD
TAD CKT
TAD CHKSH
3CA CHKSH
JMP GO

TAD WORD
DCA I ORIGIN
1SZ ORIGIN
JMP CHEX
TAD WORD
DCA ORIGIN
JMP CHEX
1Sz FIRST
HLT

CLA OSR
DCA KOBUS
TAD KOBUS
DCA ORIGIN
JMP B4

w

DCA SWITCH
JMS READIN
TAD M377
SzA CLA
JHP .+4
1SZ SWITCH
CLA CHMA
JMP BEGGH!
TAD SWITCH
SZA CLA
JHP BEGG+2
TAD CHAR
AND NASK
TAD M2d

S NA

JUP I BEGG
Sta CLA
JHP BEGG+2
1Sz BEGG

G

Ll A SN

/CLA

7551
7552
7553
1554
7555
1556
75517
7568
7561
7562
7563

BEGG
BEGN
BEGRI M
BEND
Bl

B2

B3

B4
CHAR
HEX
HKSHM
XT
FIRST
GO
INBIC
KOBUS
MASK
MEM
pees
M377
ORIGIN
READIN
STORE
SWITCH
WORD

889
9080
4o0s
8890
9888
7481
1359
7841
1345
7482
5225

7528
7425
7489
7557
1586
7511
1473
7465
1546
7476
1545
7547
7552
1433
7544
7553
7541
7551
1473
1556
7554
7416
1562
7555
1558

MEM,

FIRST,
KOBUS,
ORIGIN,
SWITCH,
M377,
BEND,

TAB WORD
CMA IAC
TAD CHKSHM
HLT

JMP BEGN

SRR e 0

SET BIN MODE

FIRST =0

BEGG
SUBROUTINE

GET 12-B WORD

[MEM=0]—4—
BEGG
SUBROUTINE L

DELETE ERROR
OUTPRINT ETC.

LEADERTTRAILER RETURN +

RETURN + 1

MEM= ~1

BEND j——lnc-cuxswwonsl——{ mar e)

STORE)———{ WORD 1 ORIGIN l——‘ ORIGIN +1 —I—Lcnzx H CHKSM

=

81 j—' WORD ORIGIN }

82 HIRST-i;HALTH SR KOBUS H SR ORIGIN }-—-—

l WORD-200 +KOBUS]

)

B3)—-I ORIGIN1 WORD H CHEX)

