DECUS

PROGRAM LIBRARY

DECUS NO. 8=-78

TITLE DIAGNOSE: A Versatile Trace Routine
for PDP-8 and EAE

AUTHOR Keith B, Oldham

COMPANY North American Aviation Science Center
Thousand Oaks, California

DATE July 19, 1967

SOURCE LANGUAGE BIN

ATTENTION

This is a USER program. Other than requiring that it conform to submittal and review standards,
no quality control has been imposed upon this program by DECUS.

The DECUS Program Library is a clearing house only; it does not generate or test programs. No
warranty, express or implied, is made by the contributor, Digital Equipment Computer Users
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or
related material, and no responsibility is assumed by these parties in connection therewith.

Diagnose: A Versatile Trace Routine for the PDP 8 Computer

K. B. Oldham
North American Aviation Science Center
Thousand Oaks, California 91360

Introduction

Trace routines are employed to track down logical errors in a pro-
gram (the "sick" program). Starting at any convenient location in the
sick program, instructions are executed, one at a time, and a record
of all operations is printed out via the teletype. To avoid the waste
of time that would ensue from tracing proven subroutines, an option is
provided to omit subroutine tracing. |

Tracé routines have adv#ntages over the more usual "break trap"
debugging routines in being completely systematic in operation, in not
requiring an operator's presence at the console, and in providing a
complete and permanent record of the sick program‘s operation. On the
other hand, they are purely diagnostic and do not enable the operator
to make any corrections or modifications to his program.

Two trace routines (Decus Nos 8-56 and 8-57) for the PDP 8 computer
were recently published by Biavati. The present routine is significantly
more versatile than those of Biavati, being able to trace sick brograms
containing floating-point, extended arithmetical, and a variety of input/
output instructions. Diagnose is, however, at a disadvantage compared
with Biavati's first routine in requiring more memory space (five pages

as opposed to two); and compared with his second routine in not possessing

T

the trace-suppression features of the latter. The mode of operation
of Diagnose is quite different from that of the trace routines of

Biavati.

Requirements

Diagnose is designed for a PDP8 computer equipped with the Extended
Arithmetical Element. Five consecutive memory pages are needed (four
for solely fixed-point operation). The tapes supplied use pages 17
through 22 (locations 348@ through 4577) but a single redefinition of
ORIGIN (source tape I) will reposition the routine to occupy locations
ORIGIN-2¢@ through ORIGIN+777.

Diagnose must not, of course, overlap the sick program, or any of
its subroutines. A floating-point package is not incorporated into
Diagnose and must be provided if floating-point tracing is required.

The floating;point section of Diagnose occupies its first page
{locations dRIGIN-2¢¢ through ORIGIN-1) and is programmed on source
tape V. However, fixed-point operation of Diagnose in no way depends
upon the floating-point section. Hence, an object tape assembled from
sour#e tapes I through IV will function perfectly for fixed-point opera-
tion and will use only four memory pages. Alternatively, if a fﬁll
(five page) object tape is used for fixed-point tracing the first page

may be overwritten with impunity.

Operation

Load Diagnose into memory (either before or after the loading of

the sick program) by means of the binary loader.

Set the switch register to ORIGIN or ORIGIN+1 (36¢@ or 36¢1 for
the tape supplied) and press "LOAD ADD" followed by "START." The
ASR-33 teletype will now print
TYPE THE INITIAL C(L):
and the opérator should respond by typing either @g@g@ or @@gl according
as he wishes the trace operation to commence with the link cleared or
set. The teletype will next ask for the initial accumulator contents,
and then for the initial contents of the multiplier quotient. éach of
these requests should be answered by typing the desired four octal digits,
producing a record such as
TYPE THE.INITIAL c(L): gag1
TYPE THE INITIAL C(AC): 1234
TYPE THE INITIAL C(MQ): 4567
At this stage the teletype will ask for the address in the sick program
at which tracing is to begin, i.e., the initial contents of the program
c;unter, by printing
TYPE THE INITIAL C(PC):

On receiving four octits (octal digits) in response to this request,
the tracing procedure will commence without further user intgrvention,
producing output formats as explained in the following section.

Most commonly the user will wish to have the link, accumulator,
and multiplier quotient registers cleared at the Qtart of the trace
routine. To save the trouble of typing @@gd three times to achieve
this clearance, the Diagnose routine should be started at ORIGIN+2 or

ORIGIN+3. The teletype will then make the sole request

TYPE THE INITIAL C(PC):

-

Note that all these responses must be in the form of four octits;
leading zeros cannot be omitted. Note also that neo printout will be
provided by the teletype untii all four octits have been inputted.

The position of switch register bit 11 indicates whether or not
subroutines are to be traced. If the bit is set (switch up) no tracing
will be carried out. Either position of switch 11 may be selected
initially and the switch may be repositioned at any time during the
operation of Diagnose.

Tracing will continue either until the "stop'" key is depressed or

until a HLT instruction is encountered in the sick program.

Output Format

This format varies somewhat according to the type of instruction
being executed, as follows
Operate Instructions
The output format when an operate instruction (group 1 micro-
instruction,; group 2 microinstruction or combined microinstruction) is
encountered is
4 accu mquo

PROG INST
L ACCU MQUO

where £, accu, mquo, L, ACCU, and MQUO are the contents of the link,
accumulator, and multiplier quotient before and after the execution of
the instruction, PROG is the contents of thebprogram counter ana INST
is the instruction code. For example, if the RAR instruction was

encountered at location 2@7 the output might be

1 g224 4567
g2¢7 791¢
#4112 4567
EAE Instructions, First Group
This group, comprising the instructions NMI, MQL, SCA, MQA, CLA,
and CAM, is handled in exactly the same was as operate instructions.
For example, the MQL instruction could produce the printout

g 4112 4567
g ogag k112

@219 7421

EAE Instructions, Second Group

The remaining EAE instructions, MUY, DVI, SHL, ASR, and LSR, require

two memory locations to specify their operation and so need different
treatment. The output format is best illustrated by an example. 1If
the instructions MUY and 2 are contained respectively in locations 211

and 212, the following printout could result

g ppde 4112
g gpg1 g224

Here we have an exception to the general rule that instructions are

g211,12 7405 ,0¢@2

executed one at a time; in this case the two instructions 74@5 and
#P@2 are treated together as a unit and the program counter will next

contain @213.

AND, TAD, DCA, ISZ, and JMP lnstructions

The output format in these cases is

~

-6~

£ acecu mguo
PROG INST=MNE ADDR PREV >POST

L ACCU MQUO

where MNE is the instruction mnemonic (AND, TAD, DCA, ISZ, or JMP).
ADDR is the effective memory reference address, i.e., in the case of
direct addressing it is the location (on the current page or page zero)
specified in INST, whereas when indirect addressing is used it is the
contents of the specified location. The contents of ADDR before and
after the instruction is executed are represented by PREV and POST.

For example, a sequence of memory reference instructions could produce

.he printout:

g gpd1 g224 ‘

#213 53@93=IMP @3@g 1277 >1277
g gag1 @224

#3080 1277=TAD @277 7776 >7776
@ 7777 ga2h

#3481 3966=DCA @g66 g@g@gp >7777
g gadg @224 :

@302 2¢66=15Z @@66 7777 >PIEP
g gog @224

g3g4 1277=TAD @277 7776 >7776
g 7776 p22k

1 3447 @224

#3085 1676=TAD S54@@ 3451 >3451
#3g6 @#276=AND @276 SLgg >S5Lgg
1 140g gazh

JMS Instructions
If bit 11 of the switch register is clear;, JMS instructions are
handled exactly the same was as are the other memory reference instruc-

tions, leading to a printout such as

1 14@¢@ g224
@397 k2hp=JMs g24d dods >@318

@241 vooo

1 14@g @224

If, however, switch 11 is in the up position when a JMS instruction is
encountered; the subroutine will be executed but not traced. .The print-
out differs in having two linefeeds following the "JMS." The previous
example would thus produce the following printout

1 14dg @224
8397 LaLg-JMS

-

g249 (gdd >@318
L AcCCU MQUO
@318 coeo

where L, ACCU, and MQUO are the register contents when the subroutine
is exited. The asterisk shown above is not printed: it indicates the

point at which any output or input called for by the subroutine occurs.

Ingut(Outgut Instructions

Diagnose is designed to handle IOT instructions for the following
equipment: ASR33 teletype keyboard/reader/printer/punch, 750C high-
speed reader, and the 75E high-speed punch. When the routine encounters
such an instruction, it and thé next two or three instructions are
treated as a unit and executed in a single operation of the Diagnose
routine. This procedure is necessary to ensure that the flags are
correctly set. The instruction unit has four members in the case of
the 750C reader, three members for the other equipment. Thus on
encountering a TSF, JMP .-1, TLS sequence at locations 234 through 236
with #252 as accumulator contents, the printout would be

1 @g252 mquo
* #234 ,36 684kl 5234 ,68L6

L g252 mquo
F237 ooo.

* is the character printed by the sequence. The output of a non-printing

-8~

character (line-feed, carriage-return or space) can be detected on the
printout as a displacement (downwards, to the left, or to the right)
of the next two lines of print. A printed character also causes a

rightwards displacement, as in the above example.

J 1.1 Instruction
The JMS 1 7 instruction is interpreted by Diagnose as a call for
entry to floating-point. It produces the format
L acecu mquo
PROG L4g7=FENT
HF XXXXXXXE XX
where FENT is a mnemonic for floating-point entry and ig.XXXXXXXE XX

denotes the contents of the floating accumulator on entry.

Floating-goint Memorx Reference Instructions
W\M’\/M’\I\MN\MM

The output format for these instructions is very similar to that
for fixed-point memory reference instructiong, viz:
P o xxxxxxxE ixx |
PROG INST=FMNE ADDR 3P.yyyyyyYE4yy > 38 . YYYYYYYE 4YY

+3 . XXXXXXXE XX
vhere iff.xxxxxxxEtxx and 3f.XXXXXXXE XX represent the contents of the
floating accumulator before and after the floating-point operation.
FMNE is the floating-point instruction mnemonic (FADD, FSUB, FMPY, FDIV,
FGET, FPUT; or FNOR) and ADDR is the effective memory reference address.

The contents of ADDR before and after execution of the floating-point

instruction are if.yyyyyyyEzyy and +5.YYYYYYYE4YY.

Exgandable Floating-goint Instructions
MAMMN

These instructions are the commands #@d1 through ¢¢17 which the
floating-point interpreter decodes according to the contents of the
"look up" table:" The output of Diagnose on encountering such an in-
struction is illustrated by the example of the square root operation:

+$.1210030GE+@9
+@3.1899999E+@5

2311 ggg2=-F@2

2312 eocoo

£E££ Instruction

This floating-point exit instruction produces an output format
similar to that for an expandable instruction. The FEXT mnemonic is
outprinted. Fixed-point operation is then resumed until the next

encounter of a JMS I 7 instruction.

Restrictions

1. Diagnose cannot commence operation within a floating-point
sequence.

2, Indifectly addressed autoindices are incorrectly traced.

3. Input/output sequences other than those for which Diagnose was

specifically designed may encounter flagging difficulty,

k. A traced subroutine must be exited normally (iﬂ£°' return to the

instruction following the JMS instruction) or suffer not more than three

advances (iﬂgo. return to up to the fourth inétruction following JMS).
5. An untraced subroutine must be exited normally.

6. ORIGIN must be the first line of a memory page.

